如果集合A={x|x2+(a+1)x+a=0}中,僅有一個(gè)元素,則a=
 
考點(diǎn):集合的表示法
專題:集合
分析:集合A={x|x2+(a+1)x+a=0}中,僅有一個(gè)元素,說明方程有兩個(gè)相等實(shí)根,利用判別式等于0,得到a的方程解之.
解答: 解:因?yàn)榧螦={x|x2+(a+1)x+a=0}中,僅有一個(gè)元素,
所以判別式△=(a+1)2-4a=0,解得a=1;
故答案為:1.
點(diǎn)評(píng):本題考查了集合與元素以及一元二次方程解的情況,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x-2y+1≥0
|x|-y-1≤0
,z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=
x2-x
},B={y|y=x2+x+1,x∈R}.
(1)求A,B;
(2)求A∪B,A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={y|y=x-2},P={x|y=
x-1
}
,那么( 。
A、M⊆PB、P⊆M
C、M∩P=ϕD、M∪P=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+x+1,則f(
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(1,+∞)上的函數(shù)f(x)=x-lnx-2,g(x)=xlnx+x.
(1)求證:f(x)存在唯一的零點(diǎn),且零點(diǎn)屬于(3,4);
(2)若k∈Z,且g(x)>k(x-1)對(duì)任意的x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線經(jīng)過點(diǎn)A(-4,2),斜率為-2.求直線的點(diǎn)斜式方程和一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-aInx,a=2時(shí),求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某一多面體內(nèi)接于球構(gòu)成一個(gè)組合體,如果該組合體的正視圖,側(cè)視圖,俯視圖均如圖所示,且圖中的四邊形是邊長為2的正方形,則該球的表面積是(  )
A、4πB、8π
C、12πD、16π

查看答案和解析>>

同步練習(xí)冊(cè)答案