如圖所示:圖1是定義在R上的二次函數(shù)f(x)的部分圖象,圖2是函數(shù)g(x)=loga(x+b)的部分圖象.
(1)分別求出函數(shù)f(x)和g(x)的解析式;
(2)如果函數(shù)y=g[f(x)]在區(qū)間[1,m)上單調(diào)遞減,求m的取值范圍.
(1)由圖1得,二次函數(shù)f(x)的頂點(diǎn)坐標(biāo)為(1,2),故可設(shè)函數(shù)f(x)=a(x-1)2+2,
又函數(shù)f(x)的圖象過(guò)點(diǎn)(0,0),故a=-2,
整理得f(x)=-2x2+4x.
由圖2得,函數(shù)g(x)=loga(x+b)的圖象過(guò)點(diǎn)(0,0)和(1,1),
故有
∴g(x)=log2(x+1)(x>-1).
(2)由(1)得y=g[f(x)]=log2(-2x2+4x+1)是由y=log2t和t=-2x2+4x+1復(fù)合而成的函數(shù),而y=log2t在定義域上單調(diào)遞增,要使函數(shù)y=g[f(x)]在區(qū)間[1,m)上單調(diào)遞減,必須t=-2x2+4x+1在區(qū)間[1,m)上單調(diào)遞減,且有t>0恒成立.
由t=0得x=,又t的圖象的對(duì)稱軸為x=1.
所以滿足條件的m的取值范圍為1<m≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知一元二次不等式f(x)<0的解集為{x|x<-1或x>},則f(10x)>0的解集為( )
A.{x|x<-1或x>-lg2} B.{x|-1<x<-lg2}
C.{x|x>-lg2} D.{x|x<-lg2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
我們定義若函數(shù)f(x)為D上的凹函數(shù)須滿足以下兩條規(guī)則:(1)函數(shù)在區(qū)間D上的任何取值有意義;(2)對(duì)于區(qū)間D上的任意n個(gè)值x1,x2,…,xn,總滿足f(x1)+f(x2)+…+f(xn)≥,那么下列四個(gè)圖像中在[0,]上滿足凹函數(shù)定義的是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0時(shí),有f(x1)>f(x2),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8,設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.16 B.-16
C.a2-2a-16 D.a2+2a-16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知命題p:關(guān)于x的函數(shù)y=x2-3ax+4在[1,+∞)上是增函數(shù),命題q:函數(shù)y=(2a-1)x為減函數(shù),若“p且q”為真命題,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,] B.(0,)
C.(,] D.(,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若a<b<c,則函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的兩個(gè)零點(diǎn)分別位于區(qū)間( )
A.(a,b)和(b,c)內(nèi)
B.(-∞,a)和(a,b)內(nèi)
C.(b,c)和(c,+∞)內(nèi)
D.(-∞,a)和(c,+∞)內(nèi)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2010年7月1日某人到銀行存入一年期款a元,若年利率為x,按復(fù)利計(jì)算,則到2015年7月1日可取款( )
A.a(1+x)5元 B.a(1+x)6元
C.a+(1+x)5元 D.a(1+x5)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知α為銳角,且2tan(π-α)-3cos(+β)+5=0,tan(π+α)+6sin(π+β)=1,則sinα的值是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com