已知函數(shù)
(Ⅰ)若在處的切線與直線平行,求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
(Ⅰ)的單調(diào)遞減區(qū)間是(),單調(diào)遞增區(qū)間是;(Ⅱ)當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),.
解析試題分析:(Ⅰ)若在處的切線與直線平行,與函數(shù)曲線的切線有關(guān),可利用導(dǎo)數(shù)的幾何意義來(lái)解,既對(duì)求導(dǎo)即可,本題由函數(shù),知,由,能求出,要求的單調(diào)區(qū)間,先求出函數(shù)的定義域,求出導(dǎo)函數(shù),令導(dǎo)函數(shù)大于,求出的范圍,寫(xiě)出區(qū)間形式即得到函數(shù)的單調(diào)增區(qū)間;(II)求在區(qū)間上的最小值,求出導(dǎo)函數(shù),令導(dǎo)函數(shù)為求出根,通過(guò)討論根與區(qū)間的關(guān)系,判斷出函數(shù)的單調(diào)性,求出函數(shù)的最小值.
試題解析:(Ⅰ)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/b/xuucw1.png" style="vertical-align:middle;" />
由在處的切線與直線平行,
則 4分
此時(shí)令
與的情況如下:
所以,的單調(diào)遞減區(qū)間是(),單調(diào)遞增區(qū)間是 7分() 1 — 0 + ↘ ↗
(Ⅱ)由
由及定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/50/9/cumwk.png" style="vertical-align:middle;" />,令
①若在上,,在上單調(diào)遞增,;
②若
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),()
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)且時(shí),令,(),()為曲線y=上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)().
(1)求的單調(diào)區(qū)間;
⑵如果是曲線上的任意一點(diǎn),若以為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
⑶討論關(guān)于的方程的實(shí)根情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其對(duì)應(yīng)的圖像為曲線C;若曲線C過(guò),且在點(diǎn)處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)若是函數(shù)的極值點(diǎn),和是函數(shù)的兩個(gè)不同零點(diǎn),且,求;
(2)若對(duì)任意,都存在(為自然對(duì)數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中a為正實(shí)數(shù).
(l)若x=0是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若在上無(wú)最小值,且在上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線與曲線在交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若1是函數(shù)的一個(gè)零點(diǎn),求函數(shù)的解析表達(dá)式;
(2)試討論函數(shù)的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線與有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com