【題目】在平面直角坐標(biāo)系中,已知直線為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點的直角坐標(biāo)為,直線與曲線的交點為,求的值.

【答案】(1) (2)3

【解析】

(1)把展開得,兩邊同乘,再代極坐標(biāo)公式得曲線的直角坐標(biāo)方程.(2) 將代入曲線C的直角坐標(biāo)方程得,再利用直線參數(shù)方程t的幾何意義和韋達(dá)定理求解.

(1)把,展開得,

兩邊同乘①.

將ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入①,

即得曲線的直角坐標(biāo)方程為②.

(2)將代入②式,得

點M的直角坐標(biāo)為(0,3).

設(shè)這個方程的兩個實數(shù)根分別為t1,t2,則t1+t2=-3. t1.t2=3

∴ t1<0, t2<0

則由參數(shù)t的幾何意義即得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2011年至2017年新開樓盤的平均銷售價格(單位:千元/平方米)的統(tǒng)計數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號

1

2

3

4

5

6

7

銷售價格

3

3.4

3.7

4.5

4.9

5.3

6

附:參考公式:,其中為樣本平均值。

參考數(shù)據(jù):

(1)關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價格的變化情況,并預(yù)測該市2019年新開樓盤的平均銷售價格。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時,求的圖象在處的切線方程;

(Ⅱ)若函數(shù)有兩個不同零點, ,且,求證: ,其中的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),曲線C2的參數(shù)方程為(為參數(shù)).在以O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線lθα C1,C2 各有一個交點.當(dāng) α0時,這兩個交點間的距離為2,當(dāng) α時,這兩個交點重合.

(1) 求曲線C1,C2的直角坐標(biāo)方程

(2) 設(shè)當(dāng) α時,lC1C2的交點分別為A1,B1,當(dāng) α=-時,lC1,C2的交點分別為A2B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義區(qū)間,,的長度均為,多個區(qū)間并集的長度為各區(qū)間長度之和,例如, 的長度. 用表示不超過的最大整數(shù),記,其中.設(shè),,當(dāng)時,不等式解集區(qū)間的長度為,則的值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDA1B1C1D1為正方體,則下面結(jié)論正確的是( 。

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.異面直線ADCB1所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點且不與坐標(biāo)軸垂直的直線交橢圓、兩點,線段的垂直平分線與軸交于點,求點的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)已知橢圓:的焦距為,離心率為,其右焦點為,過點作直線交橢圓于另一點

1)若,外接圓的方程;

2)若過點的直線與橢圓 相交于兩點、,設(shè)上一點,且滿足為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點F(1,0),O為坐標(biāo)原點,A,B是拋物線C上異于 O的兩點.

(1)求拋物線C的方程;

(2)若直線AB過點(8,0),求證:直線OA,OB的斜率之積為定值

查看答案和解析>>

同步練習(xí)冊答案