【題目】如圖,多面體ABCDA1B1C1D1為正方體,則下面結論正確的是( 。

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.異面直線ADCB1所成的角為30°

【答案】C

【解析】

根據(jù)正方體的頂點位置,可判斷A1B、B1C是異面直線;平面CB1D1內不存在與平面A1B1C1D1

垂直的直線,平面A1B1C1D1內不存在直線垂直平面CB1D1,平面CB1D1不垂直平面A1B1C1D1;根據(jù)面面平行的判斷定理可證平面CB1D1∥平面A1BD;根據(jù)正方體邊的平行關系,可得異面直線ADCB1所成的角為45°,即可得出結論.

選項A:平面平面平面,

是異面直線,該選項不正確;

選項B:由正方體可知,平面,

平面,

同理平面,

而平面內不存在與平行的直線,

所以平面內不存在直線垂直平面CB1D1

同理平面CB1D1內不存在垂直平面A1B1C1D1的直線,

所以平面CB1D1不垂直平面A1B1C1D1,故該選項不正確;

選項C:由正方體可得,可證平面,

同理可證平面,根據(jù)面面平行的判斷定理

可得平面CB1D1∥平面A1BD,故該選項正確;

選項D: ,異面直線ADCB1所成的角為

,故該選項不正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了鼓勵大家節(jié)約用水,自2013年以后,上海市實行了階梯水價制度,其中每戶的綜合用水單價與戶年用水量的關系如下表所示.

分檔

戶年用水量

綜合用水單價/(元·

第一階梯

0220(含)

3.45

第二階梯

220300(含)

4.83

第三階梯

300以上

5.83

記戶年用水量為時應繳納的水費為元.

1)寫出的解析式;

2)假設居住在上海的張明一家2015年共用水,則張明一家2015年應繳納水費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,圓的方程為,動圓與圓內切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)已知為平面內的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年來,“精準扶貧”是政府的重點工作之一,某地政府對240戶貧困家庭給予政府資金扶助,以發(fā)展個體經(jīng)濟,提高家庭的生活水平.幾年后,一機構對這些貧困家庭進行回訪調查,得到政府扶貧資金數(shù)、扶貧貧困家庭數(shù)(戶)與扶貧后脫貧家庭數(shù)(戶)的數(shù)據(jù)關系如下:

政府扶貧資金數(shù)(萬元)

3

5

7

9

政府扶貧貧困家庭數(shù)(戶)

20

40

80

100

扶貧后脫貧家庭數(shù)(戶)

10

30

70

90

(Ⅰ)求幾年來該地依靠“精準扶貧”政策的脫貧率是多少;(答案精準到0.1%)

(Ⅱ)從政府扶貧資金數(shù)為3萬元和7萬元并且扶貧后脫貧的家庭中按分層抽樣抽取8戶,再從這8戶中隨機抽取兩戶家庭,求這兩戶家庭的政府扶貧資金總和為10萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設點的直角坐標為,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1各條棱長均為4,且AA1⊥平面ABC,DAA1的中點,M,N分別在線段BB1和線段CC1上,且B1M3BM,CN3C1N,

1)證明:平面DMN⊥平面BB1C1C

2)求三棱錐B1DMN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù)滿足不等式組,則的最大值為__

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系曲線的參數(shù)方程為 (為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)的普通方程和直線的傾斜角;

(2)設點交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點與雙曲線有且只有一個公共點的直線共__________條.

查看答案和解析>>

同步練習冊答案