已知函數(shù)的圖象過點(diǎn),且點(diǎn)處的切線方程為在
(1)求函數(shù)的解析式;            (2)求函數(shù)的單調(diào)區(qū)間。
(1)
(2)上單調(diào)遞增,在單調(diào)遞減

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012549252860.png" style="vertical-align:middle;" />的圖象過點(diǎn),且點(diǎn)處的切線方程為在.所以
(1)由題意得  得                             …4分
                                                          …6分
(2) 所以
 得:上單調(diào)遞增;
 得: 單調(diào)遞減                                     …14分
點(diǎn)評(píng):導(dǎo)數(shù)是研究函數(shù)性質(zhì)尤其是單調(diào)性、極值、最值等的有力工具,要牢固掌握,靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

=上是減函數(shù),則的取值范圍是___________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)討論單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明:當(dāng)時(shí),證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)增區(qū)間是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)滿足,且,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間
(2)函數(shù)的圖象在處切線的斜率為若函數(shù)在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—5:不等式選講
設(shè)函數(shù)=
(I)求函數(shù)的最小值m;
(II)若不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案