函數(shù)的單調(diào)遞減區(qū)間為________
(-2,0),(0,2)

試題分析:根據(jù)題意,由于,那么可知,那么當f’(x)><0,則可知為-2<x<2時,則函數(shù)遞減,同時x不能為零可知單調(diào)減區(qū)間為(-2,0),(0,2)。
點評:主要是考查了利用導數(shù)求解函數(shù)單調(diào)區(qū)間的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當時,在曲線上是否存在兩點,使得曲線在兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的取值范圍;若不存在,請說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構造一個函數(shù),使得同時滿足以下三個條件:①定義域,且;②當時,;③在中使取得最大值時的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的最大值為
A.B.C.3D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)=log5(2x+1)的單調(diào)增區(qū)間是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1) 當時, 求函數(shù)的單調(diào)增區(qū)間;
(2)當時,求函數(shù)在區(qū)間上的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象過點,且點處的切線方程為在
(1)求函數(shù)的解析式;            (2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,其中,則的取值范圍是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a為實數(shù),函數(shù)f(x)=(x2+1)(xa),若f′(-1)=0,求函數(shù)yf(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),給定區(qū)間E,對任意,當時,總有則下列區(qū)間可作為E的是(  )
A.(-3,-1)B.(-1,0)C.(1,2)D.(3,6)

查看答案和解析>>

同步練習冊答案