【題目】在四棱錐中,平面底面,平分,的中點,,,分別為上一點,且.

(1)若,證明:平面.

(2)過點作平面的垂線,垂足為,求三棱錐的體積.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)在中,為直角,進而得,再利用比例關系式,得.利用面面平行的性質(zhì),證得結(jié)論;

(2)過,垂足為,證得底面,得出三棱錐的高為

再根據(jù),即可求解三棱錐的體積.

試題解析:

(1)證明:在中,為直角,

,則

平分,∴

,,∴由余弦定理可得,∴.

時,.

,,∴平面平面.

平面,∴平面.

(2)解:過,垂足為,則,

為等腰直角三角形,則也為等腰直角三角形.

∵平面底面,,∴底面,∴.

,

平面,∴,則平面.

的垂線,垂足為,則底面.

易得.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,且.設函數(shù)在區(qū)間內(nèi)單調(diào)遞減; 曲線軸交于不同的兩點,如果為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知變量 滿足約束條件 ,若目標函數(shù) 僅在點(5,3)處取得最小值,則實數(shù)的取值范圍為_______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足, ,其中.

(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;

(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,設動點.

(1)當時,若過點的直線與圓相切,求直線的方程;

(2)當時,求以為直徑且被直線截得的弦長為2的圓的方程;

(3)當時,設,過點的垂線,與以為直徑的圓交于點,垂足為,試問:線段的長是否為定值?若為定值,求出這個定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是橢圓的左頂點、右焦點,點為橢圓上一動點,當軸時, .

(1)求橢圓的離心率;

(2)若橢圓存在點,使得四邊形是平行四邊形(點在第一象限),求直線的斜率之積;

(3)記圓為橢圓的“關聯(lián)圓”. 若,過點作橢圓的“關聯(lián)圓”的兩條切線,切點為、,直線的橫、縱截距分別為、,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)若對任意的實數(shù),函數(shù)為實常數(shù))的圖象與函數(shù)的圖象總相切于一個定點.

① 求的值;

② 對上的任意實數(shù),都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)將四邊形ABCD的面積S表示成關于θ的函數(shù);
(Ⅱ)求S的最大值及此時θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】猜商品的價格游戲, 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:低了! 則此商品價格所在的區(qū)間是

A. B.

C. D.

查看答案和解析>>

同步練習冊答案