【題目】已知動圓P經(jīng)過點,并且與圓相切.

(Ⅰ)求圓心P的軌跡C的方程;

(Ⅱ)O是坐標原點,過點的直線C交于A,B兩點,在C上是否存在點Q,使得四邊形是平行四邊形?

【答案】(1) ;

(2) 直線時,橢圓C上存在點Q,否則不存在.

【解析】

(1) 由橢圓的定義可得,P的軌跡是以MN為焦點的橢圓,進而求出方程.

(2) 假設存在,根據(jù)平行四邊形已知三個點坐標,表示Q的坐標,設直線方程,聯(lián)立直線和橢圓方程,利用韋達定理整理Q的坐標,根據(jù)Q在橢圓上,求得直線方程.

(1) 由題意可得N在圓M內(nèi)部,所以兩圓內(nèi)切,

所以

由橢圓的定義可知,點的軌跡是以,為焦點的橢圓,

設橢圓方程為,

其中,,

所以

所以點的軌跡的方程為.

(2) 假設C上存在點Q,使得四邊形是平行四邊形,

由題意可知,直線的斜率存在,設直線的方程為:

設直線與橢圓C的交點

聯(lián)立可得,

由韋達定理可得,

所以,

Q在橢圓C上,所以,

解得

綜上可得,直線時,

橢圓C上存在點Q,使得四邊形是平行四邊形,否則不存在.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)若點在直線上,求直線的極坐標方程;

(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校數(shù)學建模小組為了研究雙層玻璃窗戶中每層玻璃厚度(每層玻璃的厚度相同)及兩層玻璃間夾空氣層厚度對保溫效果的影響,利用熱傳導定律得到熱傳導量滿足關系式,其中玻璃的熱傳導系數(shù)焦耳/(厘米·度),不流通、干燥空氣的熱傳導系數(shù)焦耳/(厘米·度),為室內(nèi)外溫度差,值越小,保溫效果越好,現(xiàn)有4種型號的雙層玻璃窗戶,具體數(shù)據(jù)如下表:

型號

每層玻璃厚度(單位:厘米)

玻璃間夾空氣層厚度(單位:厘米)

0.4

3

0.3

4

0.5

3

0.4

4

則保溫效果最好的雙層玻璃的型號是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于點E,AA1AD2AB4.

1)證明:AE⊥平面ECD;

2)求點C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四面體中,棱,所在直線所成角為,且,,,面和面所成的銳二面角為,面和面所成的銳二面角為,當四面體的體積取得最大值時( .

A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形中,,,,,上的點,,的中點.將沿折起到的位置,使得,如圖2

1)求證:平面平面;

2)點在線段上,當直線與平面所成角的正弦值為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】202048日,武漢市雷神山醫(yī)院為確診新型冠狀病毒肺炎患者,需要檢測核酸是否為陽性,現(xiàn)有份核酸樣本,有以下兩種檢測方式:(1)逐份檢測,則需要檢測次;(2)混合檢測,將其中(,且)份核酸樣本分別取樣混合在一起檢測,若檢測結(jié)果為陰性,這份核酸樣本全為陰性,因而這份核酸樣本只要檢測一次就夠了,如果檢測結(jié)果為陽性,為了明確這份核酸樣本究竟哪幾份為陽性,就要對這份樣本再逐份檢測,此時這份核酸樣本的檢測次數(shù)總共為次.假設在接受檢測的核酸樣本中,每份樣本的檢測結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.

1)假設有5份核酸樣本,其中只有2份樣本為陽性,若采用逐份檢測方式,求恰好經(jīng)過4次檢測就能把陽性樣本全部檢測出來的概率.

2)現(xiàn)取其中(,且)份核酸樣本,記采用逐份檢測方式,樣本需要檢測的總次數(shù)為,采用混合檢測方式,樣本需要檢測的總次數(shù)為.

①試運用概率統(tǒng)計的知識,若,試求關于的函數(shù)關系式

②若,用混合檢測方式可以使得樣本需要檢測的總次數(shù)的期望值比逐份檢測的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年底開始,非洲東部的肯尼亞等國家爆發(fā)出了一場嚴重的蝗蟲災情.目前,蝗蟲已抵達烏干達和坦桑尼亞,并向西亞和南亞等地區(qū)蔓延.蝗蟲危害大,主要危害禾本科植物,能對農(nóng)作物造成嚴重傷害,每只蝗蟲的平均產(chǎn)卵數(shù)和平均溫度有關,現(xiàn)收集了以往某地的組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.

平均溫度

平均產(chǎn)卵數(shù)

表中.

1)根據(jù)散點圖判斷,(其中為自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)關于平均溫度的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出關于的回歸方程.(結(jié)果精確到小數(shù)點后第三位)

2)根據(jù)以往統(tǒng)計,該地每年平均溫度達到以上時蝗蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達到以上的概率為.

①記該地今后年中,恰好需要次人工防治的概率為,求取得最大值時相應的概率

②根據(jù)①中的結(jié)論,當取最大值時,記該地今后年中,需要人工防治的次數(shù)為,求的數(shù)學期望和方差.

附:對于一組數(shù)據(jù)、,其回歸直線的斜率和截距的最小二乘法估計分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代十進制的算籌計數(shù)法,在數(shù)學史上是一個偉大的創(chuàng)造,算籌實際上是一根根同長短的小木棍.如圖,是利用算籌表示數(shù)19的一種方法.例如:3可表示為“”,26可表示為“=⊥”,現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用199個數(shù)字表示兩位數(shù)中,能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案