雙曲線(xiàn)
y2
16
-
x2
48
=1的離心率e=( 。
A、2
B、
2
C、
3
D、3
考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:根據(jù)雙曲線(xiàn)的方程,算出a、b、c,再由雙曲線(xiàn)的離心率公式,可得答案.
解答: 解:雙曲線(xiàn)
y2
16
-
x2
48
=1中a=4,b=4
3
,
∴c=
a2+b2
=8,
∴e=
c
a
=2.
故選:A.
點(diǎn)評(píng):本題給出雙曲線(xiàn)的方程,求雙曲線(xiàn)的離心率.著重考查了雙曲線(xiàn)的標(biāo)準(zhǔn)方程與基本概念的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式2x2+2x-4
1
2
的解集為( 。
A、x≤-3或x≥-1
B、-1≤x≤-3
C、-3≤x≤1
D、x≤-3或x≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AB=BC=2,CA=3,設(shè)
BC
=
a
CA
=
b
,
AB
=
c
,則
a
b
+
b
c
+
c
a
=(  )
A、
17
2
B、-
17
2
C、17
D、-17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框中應(yīng)填的語(yǔ)句是( 。
A、n<10B、n<11
C、n>10D、n>11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=f(x)(x∈R)是奇函數(shù),則它的圖象必經(jīng)過(guò)點(diǎn)( 。
A、(-a,-f(-a))
B、(a,-f(a))
C、(a,f(
1
a
))
D、(-a,-f(a))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)D為等腰直角三角形ABC斜邊AB的中點(diǎn),則下列各式中不恒成立的是( 。
A、(
CA
+
CB
)•(
CA
-
CB
)=0
B、
AC2
=
AC
AB
C、
BC2
=
BC
BA
D、
CD
=
CA
|
CA
|
+
CB
|
CB
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上有三條直線(xiàn)x-2y+1=0,x-1=0,x-ky=0,如果這三條直線(xiàn)將平面分為六部分,則實(shí)數(shù)k值是( 。
A、1B、2
C、0或2D、0,1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)C:y=f(x)=x3-3px2(p∈R).
(Ⅰ)當(dāng)p=
1
3
時(shí),求曲線(xiàn)C的斜率為1的切線(xiàn)方程;
(Ⅱ)設(shè)斜率為m的兩條直線(xiàn)與曲線(xiàn)C相切于A,B兩點(diǎn),求證:AB中點(diǎn)M在曲線(xiàn)C上;
(Ⅲ)在(Ⅱ)的條件下,又已知直線(xiàn)AB的方程為:y=-x-1,求p,m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:函數(shù)y=x m2-4在(0,+∞)上是減函數(shù),q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若p且q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案