【題目】學(xué)校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)

(1)求在1次游戲中,

①摸出3個白球的概率;

②獲獎的概率;

(2)求在2次游戲中獲獎次數(shù)的分布列.

【答案】I)(i;(iiIIX的分布列見解析,數(shù)學(xué)期望

【解析】

解:(1)①設(shè)在一次游戲中摸出i個白球為事件Ai(i0,1,2,3),則P(A3)·.

設(shè)在一次游戲中獲獎為事件B,則BA2∪A3,又

P(A2)·,且A2,A3互斥,所以P(B)P(A2)P(A3).

(2)由題意可知X的所有可能取值為0,1,2,

P(X0)2

P(X1)C21·

P(X2)2

所以X的分布列是

X

0

1

2

P




X的數(shù)學(xué)期望E(X).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角中,,,點在線段.

(Ⅰ) ,求的長;

)若點在線段上,且,問:當(dāng)取何值時,的面積最。坎⑶蟪雒娣e的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019422日是第50個世界地球日,半個世紀(jì)以來,這一呼吁熱愛地球環(huán)境的運動已經(jīng)演變?yōu)橄砣虻木G色風(fēng)暴,讓越來越多的人認(rèn)識到保護(hù)環(huán)境、珍惜自然對人類未來的重要性.今年,自然資源部地球日的主題是“珍愛美麗地球,守護(hù)自然資源”.某中學(xué)舉辦了以珍愛美地球,守護(hù)自然資源為主題的知識競賽.賽后從該校高一和高二年級的參賽者中隨機抽取100人,將他們的競賽成績分為7組:[30,40),[40,50),[50,60),[6070),[70,80),[80,90),[90,100],并得到如下頻率分布表:

現(xiàn)規(guī)定,“競賽成績≥80分”為“優(yōu)秀”“競賽成績<80分”為“非優(yōu)秀”

)請將下面的2×2列聯(lián)表補充完整;

優(yōu)秀

非優(yōu)秀

合計

高一

50

高二

15

合計

100

)判斷是否有99%的把握認(rèn)為競賽成績與年級有關(guān)?

附:獨立性檢驗界值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個公共點,直線與橢圓只有一個公共點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知動直線過橢圓的左焦點,且與橢圓分別交于兩點,試問:軸上是否存在定點,使得為定值?若存在,求出該定值和點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),以該直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)點,直線與曲線相交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點,直線.

(1)求與圓相切,且與直線垂直的直線方程;

2)在直線上(為坐標(biāo)原點),存在定點(不同于點),滿足:對于圓上的任一點,都有為一常數(shù),試求出所有滿足條件的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,求

(1)過點A,B且周長最小的圓的方程;

(2)過點A,B且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,右頂點是,離心率為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(不同于點),若,求證:直線過定點,并求出定點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案