【題目】設(shè)橢圓,右頂點(diǎn)是,離心率為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(不同于點(diǎn)),若,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

【答案】(1); (2).

【解析】

(1)由橢圓右頂點(diǎn)的坐標(biāo)為A(2,0),離心率,可得a,c的值,由此可得橢圓C的方程;(2)當(dāng)直線斜率不存在時(shí),設(shè),易得,當(dāng)直線斜率存在時(shí),直線,與橢圓方程聯(lián)立,得,由可得,從而得證.

(1)右頂點(diǎn)是,離心率為,

所以,∴,則,

∴橢圓的標(biāo)準(zhǔn)方程為.

(2)當(dāng)直線斜率不存在時(shí),設(shè)

與橢圓方程聯(lián)立得:,

設(shè)直線軸交于點(diǎn),,即

(舍),

∴直線過定點(diǎn);

當(dāng)直線斜率存在時(shí),設(shè)直線斜率為,,則直線,與橢圓方程聯(lián)立,得,

,

,

,則,

,

,

,

∴直線,

∴直線過定點(diǎn)舍去;

綜上知直線過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同.每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)

(1)求在1次游戲中,

①摸出3個(gè)白球的概率;

②獲獎(jiǎng)的概率;

(2)求在2次游戲中獲獎(jiǎng)次數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高一學(xué)年結(jié)束后,要對某班的50名學(xué)生進(jìn)行文理分班,為了解數(shù)學(xué)對學(xué)生選擇文理科是否有影響,有人對該班的分科情況做了如下的數(shù)據(jù)統(tǒng)計(jì):

理科人數(shù)

文科人數(shù)

總計(jì)

數(shù)學(xué)成績好的人數(shù)

25

30

數(shù)學(xué)成績差的人數(shù)

10

合計(jì)

15

(Ⅰ)根據(jù)數(shù)據(jù)關(guān)系,完成列聯(lián)表;

(Ⅱ)通過計(jì)算判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為數(shù)學(xué)對學(xué)生選擇文理科有影響.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式:x2-(a+)x+1≤0 (a∈R,且a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把某校名學(xué)生的一次考試成績(單位:)分成5組得到的頻率分布直方圖如圖所示,其中落在內(nèi)的頻數(shù)為180.

1)請根據(jù)圖中所給數(shù)據(jù),求出本次考試成績的中位數(shù)(保留一位小數(shù));

2)從這5組中按分層抽樣的方法選取40名學(xué)生的成績作為一個(gè)樣本,在內(nèi)的樣本中,再隨機(jī)抽取兩名學(xué)生的成績,求所抽取兩名學(xué)生成績的平均分不低于70分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù): ,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

女同學(xué)

總計(jì)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時(shí)間在分鐘,乙每次解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

若關(guān)于x的方程有唯一解,且,,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB、C的對邊分別為ab、c.已知cosC

(1),求△ABC的面積;

(2)設(shè)向量,,且,求sin(BA)的值.

查看答案和解析>>

同步練習(xí)冊答案