【題目】已知函數(shù).

(1)求函數(shù)圖象經(jīng)過的定點(diǎn)坐標(biāo);

(2)當(dāng)時,求曲線在點(diǎn)處的切線方程及函數(shù)單調(diào)區(qū)間;

(3)若對任意,恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)見解析(3).

【解析】

試題分析:(1)當(dāng)時,,,即可求得頂點(diǎn)坐標(biāo);(2)當(dāng),,求導(dǎo)分別求出,即可得切線方程再根據(jù)導(dǎo)函數(shù)的正負(fù),即可求出函數(shù)單調(diào)區(qū)間;(3)對函數(shù)求導(dǎo),討論,函數(shù)的單調(diào)性,進(jìn)而求出,即可求出實(shí)數(shù)的取值范圍.

試題解析:(1)當(dāng)時,

,

函數(shù)的圖象無論為何值都經(jīng)過定點(diǎn).

(2)當(dāng)時,.

,,,

則切線方程為,即.

時,如果,

時,函數(shù)單調(diào)遞增;

如果

時,函數(shù)單調(diào)遞減.

(3),.

當(dāng)時,,上單調(diào)遞增.

,不恒成立.

當(dāng)時,設(shè),.

的對稱軸為,

上單調(diào)遞增,且存在唯一,

使得.

∴當(dāng)時,,即,上單調(diào)遞減;

∴當(dāng)時,,即,上單調(diào)遞增.

上的最大值.

,得,

解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級體育課舉行了一次“投籃比賽”活動,為了了解本次投籃比賽學(xué)生總體情況,從中抽取了甲乙兩個小組樣本分?jǐn)?shù)的莖葉圖如圖所示.

5

6

5

8

6

0

1

3

6

2

4

6

9

7

1

2

7

1

3

8

0

1

8

1

(1)分別求甲乙兩個小組成績的平均數(shù)與方差;

(2)分析比較甲乙兩個小組的成績;

(3)從甲組高于70分的同學(xué)中,任意抽取2名同學(xué),求恰好有一名同學(xué)的得分在[80,90)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某射擊運(yùn)動員每次擊中目標(biāo)的概率都是0.7.現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2表示沒有擊中目標(biāo),3,4,5,6,7,8,9表示擊中目標(biāo);因?yàn)樯鋼?次,故以每4個隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運(yùn)動員射擊4次至少擊中2次的概率為( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),其中實(shí)數(shù)滿足,若的最大值為,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓上一動點(diǎn),x軸于點(diǎn)D.記滿足的動點(diǎn)M的軌跡為Γ.

(1)求軌跡Γ的方程;

(2)已知直線與軌跡Γ交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),射線OG交軌跡Γ于點(diǎn)Q,且.

證明:

AOB的面積S(λ)的解析式,并計算S(λ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上動點(diǎn)到點(diǎn)的距離與到直線的距離之比為,記動點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)設(shè)是曲線上的動點(diǎn),直線的方程為.

①設(shè)直線與圓交于不同兩點(diǎn), ,求的取值范圍;

②求與動直線恒相切的定橢圓的方程;并探究:若是曲線 上的動點(diǎn),是否存在直線 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機(jī)抽樣的方法從獲得數(shù)學(xué)和語文二等獎的學(xué)生中各抽取人,進(jìn)行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌校S機(jī)抽取人進(jìn)行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊答案