【題目】已知平面上動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比為,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動(dòng)點(diǎn),直線的方程為.
①設(shè)直線與圓交于不同兩點(diǎn), ,求的取值范圍;
②求與動(dòng)直線恒相切的定橢圓的方程;并探究:若是曲線: 上的動(dòng)點(diǎn),是否存在直線: 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說(shuō)明理由.
【答案】(1);(2)見解析
【解析】分析:(1)設(shè)設(shè),根據(jù)動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比為,建立方程,即可求得曲線的方程;(2)①先求出圓心到直線的距離,結(jié)合勾股定理可表示出,再根據(jù)及,即可求得的取值范圍,從而可得的取值范圍;②取, ,直線的方程為,取, 時(shí),直線的方程為,根據(jù)橢圓對(duì)稱性,猜想的方程為與直線相切,由此聯(lián)立方程組,轉(zhuǎn)化為恒成立,即可推出存在,若是曲線: 上的動(dòng)點(diǎn),結(jié)合以上結(jié)論可得與直線相切的定曲線的方程為.
詳解:(1)設(shè),由題意,得.
整理,得,所以曲線的方程為.
(2)①圓心到直線的距離
∵直線于圓有兩個(gè)不同交點(diǎn),
∴
又∵
∴
由,得.
又∵
∴
∴
因此, ,即的取值范圍為.
②當(dāng), 時(shí),直線的方程為;當(dāng), 時(shí),直線的方程為,根據(jù)橢圓對(duì)稱性,猜想的方程為.
下證:直線與相切,其中,即.
由消去得: ,即.
∴恒成立,從而直線與橢圓: 恒相切.
若點(diǎn)是曲線: 上的動(dòng)點(diǎn),則直線: 與定曲線: 恒相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),。
Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中, ,點(diǎn)分別是棱的中點(diǎn)。
(1)求證: 平面;
(2)求證:四邊形為矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且f=,求tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為圓上一動(dòng)點(diǎn),圓心關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.
(1)求點(diǎn)的軌跡方程;
(2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過(guò)坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的左焦點(diǎn)為,左準(zhǔn)線方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線交橢圓于, 兩點(diǎn).
①若直線經(jīng)過(guò)橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足, .求證: 為定值;
②若(為原點(diǎn)),求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com