已知tanα,tanβ是方程6x2-5x+1=0的兩根,且0<α<
π
2
,π<β<
2
,求tan(α+β)及α+β的值.
考點(diǎn):兩角和與差的正切函數(shù)
專(zhuān)題:三角函數(shù)的求值
分析:由條件利用韋達(dá)定理,兩角和的正切公式求出tan(α+β)的值,再結(jié)合0<α<
π
2
,π<β<
2
,求得α+β的值.
解答: 解:∵tan α、tan β為方程6x2-5x+1=0的兩根,
∴tanα+tanβ=
5
6
,tanαtanβ=
1
6
,tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
5
6
1-
1
6
=1.
∵0<α<
π
2
,π<β<
2
,∴π<α+β<2π,
∴α+β=
4
點(diǎn)評(píng):本題主要考查韋達(dá)定理,兩角和的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=sinωx的圖象,只要將y=f(x)的圖象( 。
A、向右平移
π
4
B、向左平移
π
4
C、向右平移
π
8
D、向左平移
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的公差d<0,且a32=a112,則該數(shù)列的前n項(xiàng)和取得最大值時(shí),n=( 。
A、6B、7C、6或7D、7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(1,0),
b
=(
1
2
1
2
),給出下列四個(gè)結(jié)論:①|(zhì)
a
|=|
b
|;②
a
b
=
2
2
;③
a
-
b
b
垂直;④
a
b
,其中真命題的序號(hào)是(  )
A、①B、③C、①④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log(x-1)(3-x)的定義域是( 。
A、(1,2)∪(3,4)
B、[1,2]∪[3,4]
C、(1,2)∪(2,3)
D、[1,2]∪[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足
x≥0
y≤x
2x+y+k≤0.
,若z=x+3y的最大值為12,試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx(a∈R);
(1)若a=1,求曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)方程;
(2)若f(x)<0對(duì)x∈(0,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣M=
a1
1b
,若向量
-2
1
在矩陣M的交換下得到向量
1
2

(Ⅰ)求矩陣M;
(Ⅱ)矩陣N=
10
21
,求直線(xiàn)x+y+1=0在矩陣NM的對(duì)應(yīng)變換作用下得到的曲線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了讓貧困地區(qū)的孩子們過(guò)一個(gè)溫暖的冬天,某校陽(yáng)光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動(dòng),共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來(lái)的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:
到班級(jí)宣傳整理、打包衣物總計(jì)
20人30人50人
(Ⅰ)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再?gòu)倪@5人中選2人,那么“至少有1人是參與班級(jí)宣傳的志愿者”的概率是多少?
(Ⅱ)若參與班級(jí)宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用X表示所選志愿者中的女生人數(shù),寫(xiě)出隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案