在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點(diǎn)P,使過P所作的圓的兩條切線相互垂直,則實(shí)數(shù)k的取值范圍是
 
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:由題意可得圓心為C(2,0),半徑R=2;設(shè)兩個(gè)切點(diǎn)分別為A、B,則由題意可得四邊形PACB為正方形,圓心到直線y=k(x+1)的距離小于或等于PC=2
2

|2k-0+k|
k2+1
≤2
2
,由此求得k的范圍.
解答: 解:∵C的方程為x2+y2-4x=0,故圓心為C(2,0),半徑R=2.
設(shè)兩個(gè)切點(diǎn)分別為A、B,則由題意可得四邊形PACB為正方形,故有PC=
2
R=2
2
,
∴圓心到直線y=k(x+1)的距離小于或等于PC=2
2
,
|2k-0+k|
k2+1
≤2
2
,解得k2≤8,可得-2
2
≤k≤2
2

故答案為:[-2
2
,2
2
].
點(diǎn)評(píng):本題主要考查直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為1的正方形,E為BB1延長(zhǎng)線上的一點(diǎn)且滿足
BB1
B1E
=1.
(Ⅰ)求證:D1E⊥平面AD1C;
(Ⅱ)當(dāng)
B1E
BB1
為何值時(shí),二面角E-AC-D1的大小為
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的首項(xiàng)為
3
2
,公比為-
1
2
,設(shè)前n項(xiàng)和為Sn,則數(shù)列{Sn-
1
Sn
}的最大項(xiàng)的值與最小項(xiàng)的值的比值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M(x,y)是不等式組
0≤x≤
3
y≤3
x≤
3
y
表示的平面區(qū)域Ω內(nèi)的一動(dòng)點(diǎn),且不等式2x-y+m≥0總成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=3cosα,則(sinα+cosα)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(其中x∈R,ω>0,-π<φ<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①已知鈍二面角α-l-β的大小為θ,
u
v
分別是平面α,β的法向量則cosθ=-|cos(
u
,
v
)|,
②圓x2+(y+1)2=3繞直線kx-y-1=0旋轉(zhuǎn)一周所得幾何體的體積是4π,
③圓錐底面半徑為
3
,母線長(zhǎng)為2,則過圓錐頂點(diǎn)的截面面積的最大值為
3

④已知A,B,C,D四點(diǎn)共面,
OA
=an
OB
-an-1
OC
-
OD
,又?jǐn)?shù)列{an}中,a1=-11,則數(shù)列{an}的前n項(xiàng)和Sn有最小值-36.
正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三角形ABC的邊長(zhǎng)為2
3
,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為
3
,此時(shí)四面體ABCD的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x-1)n的奇數(shù)項(xiàng)二項(xiàng)式系數(shù)和64,若(x-1)n=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,則a1等于(  )
A、-14B、448
C、-1024D、-16

查看答案和解析>>

同步練習(xí)冊(cè)答案