方程log 
1
2
x=2x-2013的實數(shù)根的個數(shù)為(  )
A、0B、1C、2D、不確定
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由log 
1
2
x=2x-2013,在坐標系中分別作出函數(shù)y=log 
1
2
x和y=2x-2013的圖象,利用圖象觀察函數(shù)零點的個數(shù).
解答: 解:方程log 
1
2
x=2x-2013的實數(shù)根,
即函數(shù)y=log 
1
2
x和y=2x-2013的圖象交點的橫坐標,
在同一坐標系中分別作出函數(shù)y=log 
1
2
x和y=2x-2013的圖象如下圖所示:

由圖象可知兩個函數(shù)只有一個交點,
∴方程log 
1
2
x=2x-2013的實數(shù)根有且只有一個,
故選:B
點評:本題主要考查函數(shù)零點的個數(shù)判斷,利用數(shù)形結(jié)合的思想是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ln|x|-
1
x-1
的零點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=bsinA,則△ABC一定是(  )
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O1:(x-2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動圓M與圓O1、圓O2都相切,動圓圓心M的軌跡為兩個橢圓,這兩個橢圓的離心率分別為e1、e2(e1>e2),則e1+2e2的最小值是( 。
A、
3+2
2
4
B、
3
2
C、
2
D、
3
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知a與b是兩個不相等的正數(shù),n為正整數(shù),那么p=abn+anb和q=an-1+bn-1的大小關(guān)是( 。
A、p>q
B、p<q
C、無法確定,p、q的大小與n的取值有關(guān),而與a、b的取值無關(guān)
D、無法確定,p、q的大小與a、b的取值有關(guān),而與n的取值無關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題中正確的有( 。
①函數(shù)y=x -
1
2
的定義域是{x|x≠0};
②方程lg
x-2
=lg(x-2)的解集為{3};
③不等式lg(x-1)<1的解集是{x|x<11}
④方程31-x-2=0的解集為{x|x=1-log32}.
A、①②B、②③④C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在[-1,1]的函數(shù)f(x)滿足下列兩個條件:①任意的x∈[-1,1],都有f(-x)=-f(x);②任意的m,n∈[0,1],當m≠n,都有
f(m)-f(n)
m-n
<0,則不等式f(1-3x)<f(x-1)的解集是( 。
A、[0,
1
2
B、(
1
2
,
2
3
]
C、[-1,
1
2
D、[
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,-2),
b
=(-1,3),則
a
+
b
=( 。
A、(-1,2)B、(0,1)
C、-1,2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a=0.60.4,b=0.40.6,c=0.40.4,則a,b,c的大小關(guān)系是( 。
A、c>a>b
B、a>b>c
C、a>c>b
D、b>c>a

查看答案和解析>>

同步練習冊答案