如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,將△ADE繞DE旋轉(zhuǎn)得到△A′DE(A′∉平面ABC),則下列敘述錯(cuò)誤的是(  )
A、平面A′FG⊥平面ABC
B、BC∥平面A′DE
C、三棱錐A′-DEF的體積最大值為
1
64
a3
D、直線DF與直線A′E不可能共面
考點(diǎn):平面與平面之間的位置關(guān)系,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:在A中,∵邊長為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,
將△ADE繞DE旋轉(zhuǎn)得到△A′DE,
∴A′G⊥DE,GF⊥DE,又A′G∩FG=G,
∴DE⊥平面A′FG,又DE?ABC,
∴平面A′FG⊥平面ABC,故A正確;
在B中,BC∥DE,根據(jù)線面平行的判定定理可得BC∥平面A′DE,故B正確;
在C中,當(dāng)面A′DE⊥面ABC時(shí),三棱錐A′-FDE的體積達(dá)到最大,
最大體積V=
1
3
×
1
2
×
1
2
3
4
3
4
a=
1
64
a3
,故C正確;
在D中,當(dāng)A′與F重合時(shí),直線DF與直線A′E共面,故D錯(cuò)誤.
故選:D.
點(diǎn)評:本題考查命題真假的判斷,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O的弦ED,CB的延長線交于點(diǎn)A,若BD⊥AE,AB=4,BC=2,AD=3,則CE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n+1,則通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是函數(shù)f(x)=x3+ax2+(a-6)x(a∈R)的導(dǎo)函數(shù),若f′(x)滿足f′(x+1)=f′(1-x),則以下結(jié)論正確的是( 。
A、函數(shù)f(x)的極大值為0
B、函數(shù)f(x)的極小值為5
C、函數(shù)f(x)的極大值為27
D、函數(shù)f(x)的極小值為-27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x2-2|-lgx的零點(diǎn)個(gè)數(shù)有( 。﹤(gè).
A、1B、2C、3D、無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=21.2,b=(
1
2
-0.8,c=log32,則(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(2)=2,f(2)=3,則
lim
x→2
f(x)-3
x-2
+1的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,|φ|<
π
2
)直線x=
2
3
π對稱,且它的最小正周期為π,則( 。
A、f(x)的圖象經(jīng)過點(diǎn)(0,
1
2
B、f(x)在區(qū)間[
5
12
π,
2
3
π]上是減函數(shù)
C、f(x)的最大值為A
D、f(x)的圖象的一個(gè)對稱中心是(
5
12
π,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx+1
(Ⅰ)若x>0時(shí),函數(shù)y=f(x)的圖象恒在直線y=kx上方,求實(shí)數(shù)k的取值范圍;
(Ⅱ)證明:當(dāng)時(shí)n∈N*,ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

同步練習(xí)冊答案