【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學(xué)生進入第二階段比賽.現(xiàn)有名學(xué)生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(1)估算這名學(xué)生測試成績的中位數(shù),并求進入第二階段比賽的學(xué)生人數(shù);
(2)將進入第二階段的學(xué)生分成若干隊進行比賽.現(xiàn)甲、乙兩隊在比賽中均已獲得分,進入最后強答階段.搶答規(guī)則:搶到的隊每次需猜條謎語,猜對條得分,猜錯條扣分.根據(jù)經(jīng)驗,甲隊猜對每條謎語的概率均為,乙隊猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?
【答案】(1);(2)支持票投給甲隊.
【解析】試題分析:(1)利用頻率分布直方圖求中位數(shù),中位數(shù)左邊和右邊的長方形的面積和是相等的;(2)求隨機變量的分布列的主要步驟:一是明確隨機變量的取值,并確定隨機變量服從何種概率分布;二是求每一個隨機變量取值的概率,三是列成表格;(3)求解離散隨機變量分布列和方差,首先要理解問題的關(guān)鍵,其次要準(zhǔn)確無誤的找出隨機變量的所有可能值,計算出相對應(yīng)的概率,寫成隨機變量的分布列,正確運用均值、方差公式進行計算.
試題解析:(1)設(shè)測試成績的中位數(shù)為,由頻率分布直方圖得,
,
解得: . 2分
∴測試成績中位數(shù)為.
進入第二階段的學(xué)生人數(shù)為200×(0.003+0.0015)×20=18人. 4分
(2)設(shè)最后搶答階段甲、乙兩隊猜對燈謎的條數(shù)分別為、,
則, 5分
∴. 6分
∴最后搶答階段甲隊得分的期望為, 8分
∵, ,
, ,
∴, 10分
∴最后搶答階段乙隊得分的期望為. 12分
∴,
∴支持票投給甲隊.. 13分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在人們都注重鍛煉身體,騎車或步行上下班的人越來越多,某學(xué)校甲、乙兩名教師每天可采用步行、騎車、開車三種方式上下班,步行到學(xué)校所用時間為1小時,騎車到學(xué)校所用時間為0.5小時,開車到學(xué)校所用時間為0.1小時,甲、乙兩人上下班方式互不影響.設(shè)甲、乙步行的概率分別為、,騎車的概率分別為、.
(1) 求甲、乙兩人到學(xué)校所用時間相同的概率;
(2) 設(shè)甲、乙兩人到學(xué)校所用時間和為隨機變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}和{bn}的每一項都是正數(shù),且a1=8,b1=16,且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列.
(1)求a2 , b2的值;
(2)求數(shù)列{an},{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=4,直線l:12x-5y+c=0(其中c為常數(shù)).下列有關(guān)直線l與圓O的命題中正確命題的序號是________.
①當(dāng)c=0時,圓O上有四個不同的點到直線l的距離為1;
②若圓O上有四個不同的點到直線l的距離為1,則-13<c<13;
③若圓O上恰有三個不同的點到直線l的距離為1,則c=13;
④若圓O上恰有兩個不同的點到直線l的距離為1,則13<c<39;
⑤當(dāng)c=±39時,圓O上只有一個點到直線l的距離為1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:
①對任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
②對任意的△ABC都有等式a=bcosA+ccosB成立;
③滿足“三邊是連續(xù)的三個正整數(shù)且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是鈍角△ABC的二銳角,則sinA+sinB<cosA+cosB.
其中正確的命題的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標(biāo)為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)點在橢圓上運動時,設(shè)動點的運動軌跡為若點滿足: 其中是上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考:用最小二乘法求線性回歸方程系數(shù)公式 ,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com