【題目】已知點(diǎn)R(x0 , y0)在D:y2=2px上,以R為切點(diǎn)的D的切線的斜率為 ,過Γ外一點(diǎn)A(不在x軸上)作Γ的切線AB、AC,點(diǎn)B、C為切點(diǎn),作平行于BC的切線MN(切點(diǎn)為D),點(diǎn)M、N分別是與AB、AC的交點(diǎn)(如圖).
(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.
【答案】
(1)
解:設(shè)切線方程為y﹣y0= (x﹣x0),
kBC= =
(2)
解:設(shè)D(μ,v),則MN∥BC,
∴ = ,(s,t為B,C的縱坐標(biāo)),
v= D( , ),
設(shè)A(a,b)利用切線方程得:
即 ,兩式相減得:
b= ,a= ,A( , ),
由前面計算可知:AD平行于橫軸,可得yE= ,
BC:y﹣t= (x﹣ ),將yE= ,代入xE= ,
由xA+xE= + = =2xD,
所以D為AE的中點(diǎn);
設(shè):S△AMN=R,由上可知R= S△ABC= ,
由M,N確定的確定的切線三角形的面積為 × = ,
后一個切線三角形的面積是前一切線三角形面積的 ,
由此繼續(xù)下去可得算式:
S△ABC=S=T+R+2 +4 +8 +…+,
=T+R+ + + +…,
∴T=S﹣ =S﹣ R= S
【解析】(1)根據(jù)題意可知設(shè)出直線方程,由切線斜率的定義即可表示出直線BC的斜率;(2)求得切線的斜率,可得D的坐標(biāo),求得直線BC的方程,運(yùn)用中點(diǎn)坐標(biāo)公式可得A關(guān)于D的對稱點(diǎn)在直線BC上,求得D為AE的中點(diǎn),根據(jù)MN為三角形ABC的中位線,且E為BC的中點(diǎn),D為MN的中點(diǎn),求得三角形ABC的面積,再由三角形的面積之比與對應(yīng)邊的比的關(guān)系,可得由拋物線外作出的“切線三角形”的面積構(gòu)成以 S為首項(xiàng), 為公比的等比數(shù)列,運(yùn)用無窮遞縮等比數(shù)列的求和公式,可得所有面積和,即可得到所求面積T.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, , 為的中點(diǎn), 平面,垂足落在線段上,已知.
(1)證明: ;
(2)在線段上是否存在一點(diǎn),使得二面角為直二面角?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上為減函數(shù).
(1)若命題為假命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進(jìn)行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為直角梯形, , , , ,四邊形為矩形.
(1)求證:平面平面;
(2)線段上是否存在點(diǎn),使得二面角的大小為?若存在,確定點(diǎn)的位置并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是等比數(shù)列,公比為q(q>0且q≠1),4a1 , 3a2 , 2a3成等差數(shù)列,且它的前4項(xiàng)和為S4=15.
(1)求{an}通項(xiàng)公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)的動直線與橢圓相交于兩點(diǎn),當(dāng)直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時,總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com