試說明矩形的四個頂點在以對角線的交點為圓心的同一個圓上.

見解析

解析證明 ∵四邊形ABCD為矩形,
∴OA=OC,OB=OD,又AC=DB,
∴OA=OC=OB=OD.
則點A、B、C、D到點O的距離相等,
∴A、B、C、D這四個點在以點O為圓心,OA為半徑的同一個圓上.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知相交于A、B兩點,過A點作切線交于點E,連接EB并延長交于點C,直線CA交于點D,

(1)當點D與點A不重合時(如圖1),證明:ED2=EB·EC;
(2)當點D與點A重合時(如圖2),若BC=2,BE=6,求的直徑長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,B為切點,OC平行于弦AD,連結(jié)CD.
 
(1)求證:CD是⊙O的切線;
(2)過點DDEAB于點E,交AC于點P,求證:P點平分線段DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(拓展深化)如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點C,BD∥XY,AC、BD相交于E.

(1)求證:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,AD、CE是△ABC中邊BC、AB的高,AD和CE相交于點F.

求證:AF·FD=CF·FE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.

求證:∠E=∠C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是⊙的直徑, 是⊙的切線,的延長線交于點為切點.若,,的平分線和⊙分別交于點、,求的值.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是半徑為的圓的兩條弦,它們相交于的中點,若, ,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,自⊙外一點引切線與⊙切于點,的中點,過引割線交⊙兩點. 求證:

查看答案和解析>>

同步練習冊答案