如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中點.
(1)求cos()的值;
(2)求證:A1B⊥C1M.

(1)
(2)證明見解析。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體,中,,點在棱AB上移動.

(Ⅰ)證明:;
(Ⅱ)當的中點時,求點到面的距離;
(Ⅲ)等于何值時,二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,正方體ABCD—A1B1C1D1中,P、M、N分別為棱DD1、AB、BC的中點 .

(1)求二面角B1MNB的正切值;
(2)求證:PB⊥平面MNB1
(3)若正方體的棱長為1,畫出一個正方體表面展開圖,使其滿足“有4個正方形面相連成一個長方形”的條件,并求出展開圖中P、B兩點間的距離 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(本題14分)已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且,求向量的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

點P是曲線x2-y-2ln=0上任意一點,則點P到直線4x+4y+1=0的最短距離是(  )

A.(1-ln 2) B.(1+ln 2) C. D.(1+ln 2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過點且與直線平行的直線方程是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過點P和Q的直線斜率為1,那么的值為( )

A.1 B.4 C.1或3 D.1或4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題14分)
如圖2,在四面體中,
(1)設的中點,證明:在上存在一點,使,并計算的值;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案