已知,其中,如果存在實(shí)數(shù),使,則的值為(   )
A.必為正數(shù)B.必為負(fù)數(shù)C.必為非負(fù)D.必為非正
B.

試題分析:由題意得導(dǎo)函數(shù),設(shè)的兩個(gè)根為,則的對(duì)稱軸為,且圖像開口向上,,可知,又有存在實(shí)數(shù),使,則,顯然有,當(dāng)時(shí),,又,即,則
當(dāng)時(shí),,又,即,則;當(dāng)時(shí),,綜上所述.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)若,求的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當(dāng)時(shí),不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f (1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)為常數(shù))的圖象過原點(diǎn),且對(duì)任意 總有成立;
(1)若的最大值等于1,求的解析式;
(2)試比較的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024759032515.png" style="vertical-align:middle;" />.求關(guān)于的不等式的解集;
(Ⅱ)當(dāng)時(shí),為常數(shù),且,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求的值;
(2)若存在使不等式成立,求實(shí)數(shù)的取值范圍;
(3)對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),我們把的值稱為兩函數(shù)在處的偏差,求證:函數(shù)在其公共定義域內(nèi)的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(≠0,∈R)
(Ⅰ)若,求函數(shù)的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知為函數(shù)的導(dǎo)函數(shù),則下列結(jié)論中正確的是(   )
A.
B.,
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案