【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段與上的點(diǎn),則與平面平行的直線有( )
A.0條B.1條C.2條D.無(wú)數(shù)條
【答案】D
【解析】
取的中點(diǎn),連接,在上任取一點(diǎn),過(guò)在面中,作平行于,其中為線段的中點(diǎn),交于,再過(guò)作,交于,連接,根據(jù)線面平行的判定定理,得到平面,平面,再根據(jù)面面平行的判斷定理得到平面平面,由面面平行的性質(zhì)得到則平面,由于是任意的,故有無(wú)數(shù)條.
如圖:
取的中點(diǎn),連接,則,
連接,在上任取一點(diǎn),
過(guò)在面中,作平行于,
其中為線段的中點(diǎn),交于,
再過(guò)作,交于,連接,
在平面的正投影為,連接,則,
由于,,平面,
平面,
所以平面,
同理由,可推得平面,
由面面平行的判定定理得,平面平面,
則平面.
由于為上任一點(diǎn),故這樣的直線有無(wú)數(shù)條.
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無(wú)窮多個(gè)互不相同的整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)軸長(zhǎng)為的橢圓的中心在原點(diǎn),其焦點(diǎn),在軸上,拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,兩曲線在第一象限內(nèi)相交于點(diǎn), 且,的面積為3.
(1)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作直線分別與拋物線和橢圓交于,,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記點(diǎn)到圖形上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)到圖形的距離,那么平面內(nèi)到定圓的距離與到定點(diǎn)的距離相等的點(diǎn)的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有六名百米運(yùn)動(dòng)員參加比賽,甲、乙、丙、丁四名同學(xué)猜測(cè)誰(shuí)跑了第一名.甲猜不是就是;乙猜不是;丙猜不是中任一個(gè);丁猜是中之一,若四名同學(xué)中只有一名同學(xué)猜對(duì),則猜對(duì)的是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,稱(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;
(2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對(duì)任意,都有, 試計(jì)算: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為函數(shù)(,為定義域)圖像上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),為點(diǎn)與點(diǎn)兩點(diǎn)間的距離.
(1)若,求的最大值與最小值;
(2)若,是否存在實(shí)數(shù),使得的最小值不小于2?若存在,請(qǐng)求出的取值范圍;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)作傾斜角為的直線交于兩點(diǎn),過(guò)作與平行的直線交于點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)在“精準(zhǔn)扶貧”行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌荆瑒t通過(guò)合理調(diào)配車輛,運(yùn)送這批水果的費(fèi)用最少為( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com