如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,PA⊥PD,E、F分別為PC、BD的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:平面PAB⊥平面PDC.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(I)連接AC,利用三角形中位線的性質(zhì),證明EF∥PA,利用線面平行的判定,可得EF∥平面PAD;
(Ⅱ)先證明CD⊥平面PAD,可得CD⊥PA,再證明PA⊥PD,可得PA⊥平面PCD,從而可得平面PAB⊥平面PCD.
解答: 證明:(Ⅰ)連接AC,則F是AC的中點(diǎn),
在△CPA中,∵E為PC的中點(diǎn),
∴EF∥PA,
∵PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,
∴CD⊥平面PAD,
∵PA?平面PAD,
∴CD⊥PA
又∵PA⊥PD,CD∩PD=D,
∴PA⊥平面PCD,
又PA?平面PAB,
∴平面PAB⊥平面PCD.
點(diǎn)評(píng):本題考查線面平行的判定,考查面面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有10個(gè)大小相同的黑球和白球.已知從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9

(1)求白球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為X,求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,d為常數(shù),已知對(duì)?n,m∈N*,當(dāng)n>m,總有Sn-Sm=Sn-m+m(n-m)d成立
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若正整數(shù)n,m,k成等差數(shù)列,比較Sn+Sk與2Sm的大小,并說明理由;
(3)探究:命題p:“對(duì)?n,m∈N*,當(dāng)n>m時(shí),總有Sn-Sm=Sn-m+m(n-m)d”是命題q:“數(shù)列{an}是等差數(shù)列”的充要條件嗎?請(qǐng)證明你的結(jié)論;由此類比,請(qǐng)你寫出數(shù)列{bn}是等比數(shù)列(公比為q,且q≠0)的充要條件(無需證明)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-(a+2)x+lnx(a>0).
(1)若a=1,求函數(shù)f(x)的極值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),試判斷BD1與平面AEC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)、G分別是AB,PB,CD的中點(diǎn).
(1)求證:平面EFG∥平面PAD;
(2)求證:EF⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=
2

(1)若
a
b
,求
a
b

(2)若
a
,
b
的夾角為135°,求|
a
+
b
|;
(3)若
a
-
b
a
垂直,求
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=a+2i(a∈R),z2=3-4i,且
z1
z2
為純虛數(shù),求|z1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+1,g(x)=ax2-2x+1,其中實(shí)數(shù)a≠0.
(Ⅰ)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)與g(x)在區(qū)間(a,a+2)內(nèi)均為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)函數(shù)y=f(x)與y=g(x)的圖象只有一個(gè)公共點(diǎn)且g(x)存在最小值時(shí),記g(x)的最小值為h(a),求h(a)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案