1.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1作x軸的垂線交雙曲線于A,B兩點(diǎn),若$∠A{F_2}B<\frac{π}{3}$,則雙曲線離心率的取值范圍是( 。
A.$({1,\sqrt{3}})$B.$({1,\sqrt{6}})$C.$({1,2\sqrt{3}})$D.$({\sqrt{3},3\sqrt{3}})$

分析 直接利用雙曲線的通徑與$∠A{F_2}B<\frac{π}{3}$,得到a,b,c的關(guān)系,運(yùn)用離心率公式,求出雙曲線的離心率的范圍.

解答 解:由題意可知,雙曲線的通徑為:$\frac{2^{2}}{a}$,
因?yàn)檫^(guò)焦點(diǎn)F1且垂直于x軸的弦為AB,若$∠A{F_2}B<\frac{π}{3}$,
所以$\frac{\frac{^{2}}{a}}{2c}$=tan∠AF2B<$\frac{\sqrt{3}}{3}$,e=$\frac{c}{a}$>1,
所以$\frac{{c}^{2}-{a}^{2}}{2ac}<\frac{\sqrt{3}}{3}$,$\frac{1}{2}e-\frac{1}{2e}<\frac{\sqrt{3}}{3}$,由解得e∈(1,$\sqrt{3}$).
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的基本性質(zhì),雙曲線的離心率的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)t≥1時(shí),不等式f(2t-1)≥2f(t)-3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?dāng)S一枚均勻的硬幣4次,出現(xiàn)正面向上的次數(shù)不少于反面向上的次數(shù)的概率為( 。
A.$\frac{5}{16}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知tanθ=3,則cos($\frac{3π}{2}$+2θ)=( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖所示,在正方體ABCD-A1B1C1D1中,AB=4,M,N分別為棱A1D1,A1B1的中點(diǎn),過(guò)點(diǎn)B的平面α∥平面AMN,則平面α截該正方體所得截面的面積為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xoy中,圓的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),直線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t為參數(shù)).
(1)若直線C1與O圓相交于A,B,求弦長(zhǎng)|AB|;
(2)以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為$ρ=2cosθ+2\sqrt{3}sinθ$,圓O和圓C2的交點(diǎn)為P,Q,求弦PQ所在直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=alnx-bx2(x>0)
(1)若函數(shù)f(x)的圖象在點(diǎn)(1,-$\frac{1}{2}$)處的切線與x軸平行,探究函數(shù)f(x)在[$\frac{1}{e}$,e]上是否存在極小值;
(2)當(dāng)a=1,b=0時(shí),函數(shù)g(x)=f(x)-kx,k為常數(shù),若函數(shù)g(x)有兩個(gè)相異零點(diǎn)x1,x2,證明:x1,x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖所示,用一邊長(zhǎng)為$\sqrt{2}$的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,將體積為$\frac{4π}{3}$的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為( 。
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{\sqrt{6}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且2n+1,Sn,a成等差數(shù)列(n∈N*).
(1)求a的值及數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(1-an)log2(anan+1),求數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案