16.如圖所示,在正方體ABCD-A1B1C1D1中,AB=4,M,N分別為棱A1D1,A1B1的中點(diǎn),過點(diǎn)B的平面α∥平面AMN,則平面α截該正方體所得截面的面積為18.

分析 如圖所示,截面為等腰梯形BDPQ,即可求出平面α截該正方體所得截面的面積.

解答 解:如圖所示,截面為等腰梯形BDPQ,故截面的面積為$\frac{1}{2}×(2\sqrt{2}+4\sqrt{2})×3\sqrt{2}$=18.
故答案為:18.

點(diǎn)評(píng) 本題考查平面α截該正方體所得截面的面積,考查學(xué)生的計(jì)算能力,確定截面圖形是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=e2x+ax,若當(dāng)x∈(0,+∞)時(shí),總有f(x)>1,則實(shí)數(shù)a的取值范圍為[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$,過右焦點(diǎn)F2的直線l交橢圓于M,N兩點(diǎn).
(1)若$\overrightarrow{OM}•\overrightarrow{ON}=-3$,求直線l的方程;
(2)若直線l的斜率存在,在線段OF2上是否存在點(diǎn)P(a,0),使得$|\overrightarrow{PM}|=|\overrightarrow{PN}|$,若存在,求出a的范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2|x-1|-a,g(x)=-|x+m|(a,m∈R),若關(guān)于x的不等式g(x)>-1的整數(shù)解有且僅有一個(gè)值為-3.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若函數(shù)y=f(x)的圖象恒在函數(shù)y=g(x)的圖象上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+3y≤4}\\{x≥-2}\end{array}\right.$,則z=|3x+y|的最大值是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1作x軸的垂線交雙曲線于A,B兩點(diǎn),若$∠A{F_2}B<\frac{π}{3}$,則雙曲線離心率的取值范圍是( 。
A.$({1,\sqrt{3}})$B.$({1,\sqrt{6}})$C.$({1,2\sqrt{3}})$D.$({\sqrt{3},3\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.焦點(diǎn)為(0,6),且與雙曲線$\frac{{x}^{2}}{2}$-y2=1有相同的漸近線的雙曲線方程是( 。
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1B.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1C.$\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1D.$\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知,函數(shù)f(x)=|x+a|+|x-b|.
(Ⅰ)當(dāng)a=1,b=2時(shí),求不等式f(x)<4的解集;
(Ⅱ)若a,b∈R,且$\frac{1}{2a}$+$\frac{2}$=1,求證:f(x)≥$\frac{9}{2}$;并求f(x)=$\frac{9}{2}$時(shí),a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在三棱錐P-ABC中,△PAB是等邊三角形,∠APC=∠BPC=60°.
(Ⅰ)求證:AB⊥PC;
(Ⅱ)若PB=4,BE⊥PC,求三棱錐B-PAE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案