【題目】已知數(shù)列,,其前項(xiàng)和滿足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè),為數(shù)列的前項(xiàng)和,求證:;
(3)設(shè)(為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】試題分析:(1)當(dāng)時(shí),得到,當(dāng)時(shí),,即可化簡(jiǎn),即可證得結(jié)論;(2)由(1)可得 ,利用乘公比錯(cuò)誤相減法,即可求解數(shù)列的和;(3)由得,整理得,當(dāng)為奇數(shù)時(shí),,∴;當(dāng)為偶數(shù)時(shí),,∴,由為非零整數(shù),即可求解.
試題解析:(1)當(dāng)時(shí),,∴,
當(dāng)時(shí),,
∴,即,∴(常數(shù)),
又,∴是首項(xiàng)為2,公差為1的等差數(shù)列,∴.
(2) ,
∴,
,
相減得 ,
∴.
(3)由,得,
,
,,
當(dāng)為奇數(shù)時(shí),,∴;
當(dāng)為偶數(shù)時(shí),,∴,
∴,又為非零整數(shù),∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列四個(gè)命題:
①等差數(shù)列一定是單調(diào)數(shù)列;
②等差數(shù)列的前項(xiàng)和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列;
③已知等比數(shù)列的公比為,若,則數(shù)列是單調(diào)遞增數(shù)列.
④記等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的最大值一定在處達(dá)到.
其中正確的命題有_____.(填寫所有正確的命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】總體由編號(hào)為01,02,03,,49,50的50個(gè)個(gè)體組成,利用隨機(jī)數(shù)表(以下選取了隨機(jī)數(shù)表中的第1行和第2行)選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來(lái)的第4個(gè)個(gè)體的編號(hào)為( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)為何值時(shí),.①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;
(2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18
[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2
根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)落在[30.5,42.5)內(nèi)的概率約是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)數(shù)函數(shù)過(guò)點(diǎn),.
(1)求的解析式,并指出的定義域;
(2)設(shè),求函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司最近4年對(duì)某種產(chǎn)品投入的宣傳費(fèi)萬(wàn)元與年銷售量之間的關(guān)系如下表所示.
1 | 4 | 9 | 16 | |
168.6 | 236.6 | 304.6 | 372.6 |
(1)根據(jù)以上表格中的數(shù)據(jù)判斷:與哪一個(gè)更適宜作為與的函數(shù)模型?
(2)已知這種產(chǎn)品的年利潤(rùn)萬(wàn)元與的關(guān)系為,則年宣傳費(fèi)為多少時(shí)年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,若在,,,四個(gè)點(diǎn)中有3個(gè)在上.
(1)求橢圓的方程;
(2)若點(diǎn)與點(diǎn)是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com