【題目】已知直線,圓

1)判斷直線與圓的位置關系,并證明你的結論;

2)直線過直線的定點且,若與圓交與兩點,與圓交與 兩點,求的最大值.

【答案】1直線與圓相交2

【解析】

試題分析:(1)直線方程可整理為(x-2y+2)+(4x+3y-14)k=0,可得直線過定點;求出圓心C到點P(2,2)的距離,與半徑比較,可得可得直線與圓的位置關系;(2,利用基本不等式,即可求AB+EF的最大值

試題解析:(1)直線與圓相交

證明:直線方程可整理為

所以 解得

所以直線過定點

方程可整理為

因為圓心到點的距離

,所以直線與圓相交.

(2)設點到直線的距離分別為

所以

=

=

又因為

所以 (當且僅當時取到等號)

所以

所以

所以

所以的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓C的標準方程;

(2)若直線與橢圓相交于、兩點,且,求證:的面積為定值并求出定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】單調(diào)遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.

(1)求證:數(shù)列為等差數(shù)列

求數(shù)列通項公式;

(2)設數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列判斷:①一條直線和一點確定一個平面;②兩條直線確定一個平面;③三角形和梯形一定是平面圖形;④三條互相平行的直線一定共面其中正確的是_______.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法不正確的是( )

A. , 為不共線向量,若,則

B. , 為平面內(nèi)兩個不相等向量,則平面內(nèi)任意向量都可以表示為

C. , ,則不一定共線

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點數(shù),分別記為

(1)若記“”為事件,求事件發(fā)生的概率;

(2)若記“”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

⑴從區(qū)間內(nèi)任取一個實數(shù),設事件表示“函數(shù)在區(qū)間上有兩個不同的零點”,求事件發(fā)生的概率;

⑵若聯(lián)系擲兩次一顆均勻的骰子(骰子六個面上標注的點數(shù)分別為)得到的點數(shù)分別為,記事件表示“上恒成立”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行了一次環(huán)保知識競賽活動. 為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)得分取正整數(shù),滿分為100分作為樣本樣本容量為進行統(tǒng)計. 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖圖中僅列出了得分在[50,60,[90,100]的數(shù)據(jù).

1求樣本容量和頻率分布直方圖中的,的值;

2在選取的樣本中,從競賽成績是80分以上含80分的同學中隨機抽取3名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設表示所抽取的3名同學中得分在[80,90的學生人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當x∈[1,4]時,求函數(shù)的值域;

2)如果對任意的x∈[1,4],不等式恒成立,求實數(shù)k的取值范圍

查看答案和解析>>

同步練習冊答案