【題目】如圖是某社區(qū)工會(huì)對(duì)當(dāng)?shù)仄髽I(yè)工人月收入情況進(jìn)行一次抽樣調(diào)查后畫(huà)出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為(

A.1000
B.2000
C.3000
D.4000

【答案】A
【解析】解:由頻率的意義可知,從左到右各個(gè)小組的頻率之和是1,同時(shí)每小組的頻率=
∴[1.5,2)長(zhǎng)方形的面積為0.3.第二組月收入在[1.5,2)千元的頻數(shù)為300,
所以此次統(tǒng)計(jì)的樣本容量是300÷0.3=1000.
故選A.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點(diǎn),G、H分別是BC,CD上的點(diǎn),且 . ,則直線(xiàn)FH與直線(xiàn)EG(
A.平行
B.相交
C.異面
D.垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的三內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,設(shè)向量 ,若
(1)求角B的大;
(2)若△ABC的面積為 ,求AC邊的最小值,并指明此時(shí)三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2).
(1)求a的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線(xiàn)與圓交于, 兩點(diǎn).

(1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);

(2)動(dòng)點(diǎn)在圓上(不與 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí)f(x)=
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性(不必證明);
(3)若對(duì)任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知經(jīng)銷(xiāo)某種商品的電商在任何一個(gè)銷(xiāo)售季度內(nèi),每售出噸該商品可獲利潤(rùn)萬(wàn)元,未售出的商品,每噸虧損萬(wàn)元.根據(jù)往年的銷(xiāo)售經(jīng)驗(yàn),得到一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷(xiāo)售季度籌備了噸該商品.現(xiàn)以(單位:噸, )表示下一個(gè)銷(xiāo)售季度的市場(chǎng)需求量, (單位:萬(wàn)元)表示該電商下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該商品獲得的利潤(rùn).

(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的平均數(shù)與中位數(shù)的大小;

(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)不少于57萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩轉(zhuǎn)盤(pán)游戲,該游戲規(guī)則是這樣的:一個(gè)質(zhì)地均勻的標(biāo)有12等分?jǐn)?shù)字格的轉(zhuǎn)盤(pán)(如圖),甲、乙兩人各轉(zhuǎn)轉(zhuǎn)盤(pán)一次,轉(zhuǎn)盤(pán)停止時(shí)指針?biāo)傅臄?shù)字為該人的得分.(假設(shè)指針不能指向分界線(xiàn))現(xiàn)甲先轉(zhuǎn),乙后轉(zhuǎn),求下列事件發(fā)生的概率

(1)甲得分超過(guò)7分的概率.
(2)甲得7分,且乙得10分的概率
(3)甲得5分且獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設(shè),已知函數(shù)上是增函數(shù).

(1)研究函數(shù)上零點(diǎn)的個(gè)數(shù);

(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案