求下列各式的值.
(Ⅰ)(
5
6
a
1
3
b-2)•(-3a
1
2
b-1)÷(4a
2
3
b
-2
)
1
2
•(a-
1
2
b
3
2
);
(Ⅱ)lg2•lg50-lg5•lg20-lg4.
考點:根式與分數(shù)指數(shù)冪的互化及其化簡運算,對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:(I)利用指數(shù)冪的運算法則即可得出;
(II)利用lg2+lg5=1和對數(shù)的運算法則即可得出.
解答: 解:(I)原式=
5
6
×(-3)a
1
3
+
1
2
-
1
2
b-2-1+
3
2
÷(2a
2
3
×
1
2
b-2×
1
2
)

=-
5
4
a
1
3
-
1
3
b-
3
2
+1
=-
5
4
b-
1
2

(II)原式=lg2(1+lg5)-lg5(1+lg2)-2lg2
=lg2-lg5-2lg2=-lg5-lg2=-1.
點評:本題考查了指數(shù)冪的運算法則、lg2+lg5=1和對數(shù)的運算法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x,x≥0
-x2,x<0,.
,其中f(a)=4,則實數(shù)a的取值是( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且對于任意的n∈N*,恒有Sn=2an-n,設bn=log2(an+1).
(1)求證數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項公式an和bn;
(3)設cn=
2bn
anan+1
,
①判定數(shù)列{cn}的單調(diào)性,并求數(shù)列{cn}的最大值.
②求
lim
n→∞
(c1+c2+…+cn).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面A1ACC1是邊長為2的菱形,∠A1AC=60°.在面ABC中,AB=2
3
,BC=4,M為BC的中點,過A1,B1,M三點的平面交AC于點N.
(1)求證:N為AC中點;
(2)平面A1B1MN⊥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.
(1)求證A1A⊥A1C;
(2)若A1A=A1C=2,求三棱錐B1-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R)
(1)當a=-1時,求曲線y=f(x)在(2,f(2))處的切線方程;
(2)當0≤a≤1時,試討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=4y的焦點為F,準線為l,過l上一點P作拋物線的兩切線,切點分別為A、B,
(1)求證:PA⊥PB;
(2)求證:A、F、B三點共線;
(3)求
FA
FB
FP
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P到定點F(1,0)的距離與點P到定直線l:x=4的距離之比為
1
2

(1)求動點P的軌跡C的方程;
(2)設M、N是直線l上的兩個點,點E與點F關于原點O對稱,若
EM
FN
=0,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊三角形ABC與直角梯形ABDE所在的平面垂直,BD∥AE,BD=2AE,AE⊥AB.
(Ⅰ)若F為CD中點,證明:EF⊥平面BCD;
(Ⅱ)在線段AC上是否存在點N,使CD∥平面BEN,若存在,求
AN
NC
的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案