【題目】已知函數(shù)

1)當(dāng)為何值時(shí),軸為曲線(xiàn)的切線(xiàn);

(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).

【答案】;()當(dāng)時(shí),由一個(gè)零點(diǎn);當(dāng)時(shí),有兩個(gè)零點(diǎn);當(dāng)時(shí),有三個(gè)零點(diǎn).

【解析】試題分析:()先利用導(dǎo)數(shù)的幾何意義列出關(guān)于切點(diǎn)的方程組,解出切點(diǎn)坐標(biāo)與對(duì)應(yīng)的值;()根據(jù)對(duì)數(shù)函數(shù)的圖像與性質(zhì)將分為研究的零點(diǎn)個(gè)數(shù),若零點(diǎn)不容易求解,則對(duì)再分類(lèi)討論.

試題解析:()設(shè)曲線(xiàn)軸相切于點(diǎn),則,,即,解得.

因此,當(dāng)時(shí),軸是曲線(xiàn)的切線(xiàn).

)當(dāng)時(shí),,從而,

在(1,+∞)無(wú)零點(diǎn).

當(dāng)=1時(shí),若,則,=1的零點(diǎn);若,則,,=1不是的零點(diǎn).

當(dāng)時(shí),,所以只需考慮在(0,1)的零點(diǎn)個(gè)數(shù).

)若,則在(0,1)無(wú)零點(diǎn),故在(0,1)單調(diào),而,,所以當(dāng)時(shí),在(0,1)有一個(gè)零點(diǎn);當(dāng)0時(shí),在(01)無(wú)零點(diǎn).

)若,則在(0,)單調(diào)遞減,在(1)單調(diào)遞增,故當(dāng)=時(shí),取的最小值,最小值為=.

0,即0,在(0,1)無(wú)零點(diǎn).

=0,即,則在(0,1)有唯一零點(diǎn);

0,即,由于,所以當(dāng)時(shí),在(0,1)有兩個(gè)零點(diǎn);當(dāng)時(shí),在(0,1)有一個(gè)零點(diǎn).…10

綜上,當(dāng)時(shí),由一個(gè)零點(diǎn);當(dāng)時(shí),有兩個(gè)零點(diǎn);當(dāng)時(shí),有三個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)lnx+ +2ax(a≤0).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a<0時(shí),討論f(x)的單調(diào)性;
(3)若對(duì)任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面向量 滿(mǎn)足| |=| |=1, = ,若向量 滿(mǎn)足| + |≤1,則| |的最大值為(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,則x﹣b的取值范圍是(
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD為邊長(zhǎng)為4的正方形,M是BC的中點(diǎn),EF∥平面ABCD,且EF=2,AE=DE=BF=CF=
(1)求證:ME⊥平面ADE;
(2)求二面角B﹣AE﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,離心率為,并過(guò)點(diǎn).

(1)求橢圓方程;

(2)若直線(xiàn)與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn)。求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工藝廠(chǎng)有銅絲5萬(wàn)米,鐵絲9萬(wàn)米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠(chǎng)用所有原來(lái)編制個(gè)花籃 個(gè)花盆.

(Ⅰ)列出滿(mǎn)足的關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;

(Ⅱ)若出售一個(gè)花籃可獲利300元,出售一個(gè)花盤(pán)可獲利200元,那么怎樣安排花籃與花盆的編制個(gè)數(shù),可使得所得利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為振興旅游業(yè),四川省2009年面向國(guó)內(nèi)發(fā)行總量為2000萬(wàn)張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡(jiǎn)稱(chēng)金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡(jiǎn)稱(chēng)銀卡).某旅游公司組織了一個(gè)有36名游客的旅游團(tuán)到四川名勝旅游,其中 是省外游客,其余是省內(nèi)游客.在省外游客中有 持金卡,在省內(nèi)游客中有 持銀卡.
(Ⅰ)在該團(tuán)中隨機(jī)采訪(fǎng)3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;
(Ⅱ)在該團(tuán)的省內(nèi)游客中隨機(jī)采訪(fǎng)3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x1,x2.

求證:tan x1+tan x2>2tan.

查看答案和解析>>

同步練習(xí)冊(cè)答案