【題目】為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡).某旅游公司組織了一個(gè)有36名游客的旅游團(tuán)到四川名勝旅游,其中 是省外游客,其余是省內(nèi)游客.在省外游客中有 持金卡,在省內(nèi)游客中有 持銀卡.
(Ⅰ)在該團(tuán)中隨機(jī)采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;
(Ⅱ)在該團(tuán)的省內(nèi)游客中隨機(jī)采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

【答案】解:(Ⅰ)由題意得,省外游客有27人,其中9人持金卡;省內(nèi)游客有9人,其中6人持銀卡.設(shè)事件B為“采訪該團(tuán)3人中,恰有1人持金卡且持銀卡者少于2人”, 事件A1為“采訪該團(tuán)3人中,1人持金卡,0人持銀卡”,
事件A2為“采訪該團(tuán)3人中,1人持金卡,1人持銀卡”.
P(B)=P(A1)+P(A2
= +
= =
所以在該團(tuán)中隨機(jī)采訪3人,恰有1人持金卡且持銀卡者少于2人的概率是
(Ⅱ)ξ的可能取值為0,1,2,3,

,
,

所以ξ的分布列為

ξ

0

1

2

3

P

所以
【解析】(Ⅰ)由題意得,境外游客有27人,其中9人持金卡;境內(nèi)游客有9人,其中6人持銀卡.記出事件,表示出事件的概率,根據(jù)互斥事件的概率公式,得到結(jié)論.(Ⅱ)ξ的可能取值為0,1,2,3,分別求出其對(duì)應(yīng)的概率,能得到ξ的分布列和數(shù)學(xué)期望Eξ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱AB的中點(diǎn)為P,若光線從點(diǎn)P出發(fā),依次經(jīng)三個(gè)側(cè)面BCC1B1 , DCC1D1 , ADD1A1反射后,落到側(cè)面ABB1A1(不包括邊界),則入射光線PQ與側(cè)面BCC1B1所成角的正切值的范圍是(
A.( ,
B.( ,4)
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)為何值時(shí),軸為曲線的切線;

(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在軸非負(fù)半軸上,半徑為2的圓C與直線相切.

(1)求圓C的方程;

(2)設(shè)不過原點(diǎn)O的直線l與圓O:x2+y2=4相交于不同的兩點(diǎn)A,B.①求△OAB的面積的最大值;②在圓C上,是否存在點(diǎn)M(m,n),使得直線l的方程為mx+ny=1,且此時(shí)△OAB的面積恰好取到①中的最大值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A為直角,AB∥CD,AB=4,AD=2,DC=2.

(Ⅰ)求線段BC1的長度;

(Ⅱ)異面直線BC1與DC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三角形的三邊長分別為3,4,5,P是三角形內(nèi)的一點(diǎn),則點(diǎn)P到這個(gè)三角形三邊的距離的積的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200 kg,每千克飼料的價(jià)格為1.8元,飼料的保管與其他費(fèi)用為平均每千克每天0.03元,購買飼料每次支付運(yùn)費(fèi)300元.

(1)該廠多少天購買一次飼料才能使平均每天支付的總費(fèi)用最少?

(2)若提供飼料的公司規(guī)定:當(dāng)一次購買飼料不少于5 t時(shí)其價(jià)格可享受八五折優(yōu)惠(即為原價(jià)的85%).該廠是否可以考慮利用此優(yōu)惠條件?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,交A、B、C所對(duì)的邊分別為a,b,c,且c=acosB+bsinA
(Ⅰ)求A;
(Ⅱ)若a=2 ,求△ABC的面積的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案