(本小題滿(mǎn)分12分)如圖,在四棱錐P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分別是PA、BC的中點(diǎn).
(I)求證:MN∥平面PCD;
(II)在棱PC上是否存在點(diǎn)E,使得AE上平面PBD?若存在,求出AE與平面PBC所成角的正弦值,若不存在,請(qǐng)說(shuō)明理由
(Ⅰ)證明:取PD中點(diǎn)為F,連結(jié)FC,MF.
,.
∴四邊形為平行四邊形,……………3分
,又平面,……………………5分
∴MN∥平面PCD.

(Ⅱ)以A為原點(diǎn),AB、AD、AP分別為x、y、z軸建立空間直角坐標(biāo)系。設(shè)AB=2,則B(2,0,0),D(0,2,0),P(0,0,2),C(2,2,0),
設(shè)PC上一點(diǎn)E坐標(biāo)為,

.………………7分
,解得
.………………9分
作AH⊥  PB于H,∵BC⊥平面PAB,∴BC⊥AH,
∴AH⊥平面PBC,取為平面PBC的法向量.則,
∴設(shè)AE與平面PBC所成角為,,的夾角為,則
.………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.如圖(1),在直角梯形ABCD中,,,,,以DE為軸旋轉(zhuǎn)至圖(2)位置,F(xiàn)為DC的中點(diǎn).     
(1)求證:平面
(2)若平面平面,且BC垂直于AE
求①二面角的大小.
②直線BF與平面ABED所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)多面體的直觀圖和三視圖如圖所示,其中分別是的中點(diǎn),上的一動(dòng)點(diǎn).
(1)求證:
(2)當(dāng)時(shí),在棱上確定一點(diǎn),使得//平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本題12分)如圖2,在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,點(diǎn)E、F、G分別是DD1、BD、BB1的中點(diǎn)。
(Ⅰ)求直線EF與直線CG所成角的余弦值;
(Ⅱ)求直線C1C與平面GFC所成角的正弦值;
(Ⅲ)求二面角E—FC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)三棱柱的直觀圖和三視圖如圖所示(主視圖、俯視圖都是矩形,左視圖是直角三角形),設(shè)為線段上的點(diǎn).
(1)求幾何體的體積;
(2)是否存在點(diǎn)E,使平面平面,若存在,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方體的棱長(zhǎng)是a,則點(diǎn)到平面的距離是
(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.如圖,中,,分別過(guò)作平面的垂線,連結(jié)交于點(diǎn).
(Ⅰ)設(shè)點(diǎn)中點(diǎn),若,求證:直線與平面平行;
(Ⅱ)設(shè)中點(diǎn),二面角等于,求直線與平面所成角
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正三棱柱ABC—A1B1C1中,AB=1,若二面角C—AB—C1的大小為60°,則點(diǎn)C到平面C1AB的距離為(     )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,已知是直角梯形,,,
平面
(1) 證明:;
(2) 若的中點(diǎn),證明:∥平面;
(3)若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案