設函數(shù)f(x)=x3-
1
2
x2-2x-
2
3

(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當x∈[-1,1]時,f(x)<m恒成立,求實數(shù)m的取值范圍.
考點:利用導數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問題
專題:綜合題,導數(shù)的概念及應用
分析:(1)求導數(shù),利用導數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間;
(2)恒成立問題可轉(zhuǎn)化成f(x)max<m即可.
解答: 解:(1)f′(x)=3x2-x-2=0,得x=1,-
2
3

在(-∞,-
2
3
)和[1,+∞)上f′(x)>0,f(x)為增函數(shù);
在(-
2
3
,1)上f′(x)<0,f(x)為減函數(shù).
所以所求f(x)的單調(diào)增區(qū)間為(-∞,-
2
3
]和[1,+∞),單調(diào)減區(qū)間為[-
2
3
,1].
(2)由(1)知,當x∈[-1,-
2
3
]時,f′(x)>0,[-
2
3
,1]時,f′(x)<0
∴f(x)≤f(-
2
3
)=
4
27

∵當x∈[-1,1]時,f(x)<m恒成立,
∴m>
4
27
點評:本題以函數(shù)為載體,考查函數(shù)的單調(diào)性,同時考查了恒成立問題的處理,注意利用好導數(shù)工具.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

己知兩點F1(-2,0),F(xiàn)2(2,0),動點P滿足條件||PF1|-|PF2||=2
3

(Ⅰ)求動點P的軌跡方程E.
(Ⅱ)是否存在過點G(2,2)的直線l與曲線E交于不同的兩點N,N,使G平分線段MN,試證明你的結論.
(Ⅲ)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2(其中O為原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點是橢圓C:
x2
4
+
y2
3
=1的中心O,焦點與該橢圓的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)設橢圓C的右準線交x軸于點Q,過點Q的直線l交拋物線于D、E兩點.求△ODE面積的最小值;
(Ⅲ)設A、B分別為橢圓C的左、右頂點,P為右準線上不同于點Q的任意一點,若直線AP、BP分別與橢圓相交于異于A、B的點M、N.求證:點B在以MN為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們已經(jīng)學過了等差數(shù)列,你是否想到過有沒有等和數(shù)列呢?
(1)類比“等差數(shù)列”給出“等和數(shù)列”的定義;
(2)探索等和數(shù)列{an}的奇數(shù)項與偶數(shù)項各有什么特點?并加以說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,CD=2,PA=AD=AB=1,E為PC的中點.
(1)求證:EB∥平面PAD;
(2)求直線BD與平面PCD所成的角;
(3)求二面角A-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,y軸右側(cè)的點A在橢圓E上運動,直線MA與圓C:x2+y2=b2相切于點M(x0,y0).
(1)求直線MA的方程;
(2)求證:|AF|+|AM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P(x0,y0)在橢圓
x2
a2
+
y2
b2
=1內(nèi),求被點P所平分的中點弦的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(-2,-2),Q(0,-1),取一點R(2,m),要使PR+RQ最小,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B分別是射線OM,ON上的兩點,給出下列向量:
OA
+2
OB
;②
1
2
OA
+
1
3
OB
;③
3
4
OA
+
1
3
OB
;④
3
4
OA
+
1
5
OB
;⑤
3
4
OA
-
1
5
OB
這些向量中以O為起點,終點在陰影區(qū)域內(nèi)的是
 
.(填序號)

查看答案和解析>>

同步練習冊答案