【題目】如圖,在直三棱柱中,,,,,分別是,的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)先利用線面垂直得到線線垂直,再利用線面垂直的判定定理和面面垂直的判定定理進(jìn)行證明;(2)利用三角形的中位線得到線線平行和線段,得到平行四邊形,再由平行四邊形的性質(zhì)得到線線平行,再由線面平行的判定定理進(jìn)行證明;(3)利用三棱錐的體積公式進(jìn)行求解.
試題解析:(Ⅰ)證明:在三棱柱中,
底面,所以.
又因為,,
所以平面,
又平面,
所以平面平面
(Ⅱ)證明:取的中點,連接,.
因為,,分別是,,的中點,
所以,且,.
因為,且,所以,且,
所以四邊形為平行四邊形,所以.
又因為平面,平面,所以平面.
(Ⅲ)因為,,,所以.
所以三棱錐的體積
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,判斷的單調(diào)性;
(2)若在上為單調(diào)增函數(shù),求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,頂點為,且.
(1)求橢圓的方程;
(2)是橢圓上除頂點外的任意點,直線交軸于點,直線交于點.設(shè)的斜率為, 的斜率為,試問是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)t滿足f(0)=f(2)=2,f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[﹣1,2]時,求y=f(x)的值域;
(3)設(shè)h(x)=f(x)﹣mx在[1,3]上是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖橢圓的上下頂點為A、B,直線: ,點P是橢圓上異于點A、B的任意一點,連結(jié)AP并延長交直線于點N,連結(jié)BP并延長交直線于點M,設(shè)AP、BP所在直線的斜率分別為,若橢圓的離心率為,且過點,(1)求的值,并求最小值;(2)隨著點P的變化,以MN為直徑的圓是否恒過定點,若過定點,求出該定點坐標(biāo);若不過定點,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項和為Tn.求滿足不等式>2010的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的最小值;
(2)若曲線與僅有一個交點,證明:曲線與在點處有相同的切線,且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com