如圖,是棱長(zhǎng)為的正方體,、分別是棱上的動(dòng)點(diǎn),且

(1)求證:;
(2)當(dāng)、、、共面時(shí),求:面與面所成二面角的余弦值.

(1)建立空間坐標(biāo)系,利用向量垂直證明線線垂直;(2)

解析試題分析:(1)以為原點(diǎn),、所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系 …1分,則、,設(shè),則,        2分,
從而                  3分,
,所以      5分.
(2)易得,、 ,設(shè)平面的一個(gè)法向量為, …6分
依題意          8分,
所以              9分,
同理平面的一個(gè)法向量為    12分,
由圖知,面與面所成二面角的余弦值    13分.
考點(diǎn):本題考查了空間中線線關(guān)系及二面角的求法
點(diǎn)評(píng):求解和證明立體幾何問(wèn)題一方面可以直接利用幾何方法,通過(guò)證明或找到線面之間的關(guān)系,依據(jù)判定定理或性質(zhì)進(jìn)行證明求解.利用空間向量法證明垂直,即證明向量的數(shù)量積等于0;若求二面角則通過(guò)兩個(gè)半平面的法向量的夾角進(jìn)行求解判斷。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.

(1)證明:CB1⊥BA1;
(2)已知AB=2,BC=,求三棱錐C1-ABA1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED為正方形,且所在平面垂直于平面ABC.

(Ⅰ)證明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在正方體中,棱長(zhǎng)為2,是棱上中點(diǎn),是棱中點(diǎn),(1)求證:;(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三棱錐的三視圖如圖所示.

(Ⅰ)求證:是直角三角形;
 求三棱錐是全面積;
(Ⅲ)當(dāng)點(diǎn)在線段上何處時(shí),與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四棱錐P-ABCD的三視圖和直觀圖如下:

(1)求四棱錐P-ABCD的體積;
(2) 若E是側(cè)棱PC上的動(dòng)點(diǎn),是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.
(3) 若F是側(cè)棱PA上的動(dòng)點(diǎn),證明:不論點(diǎn)F在何位置,都不可能有BF⊥平面PAD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

ABC的邊AB,BC,CA上分別取D,E,F(xiàn).使得DE=BE,F(xiàn)E=CE,又點(diǎn)O是△ADF的外心。

(Ⅰ)證明:D,E,F(xiàn),O四點(diǎn)共圓;
(Ⅱ)證明:O在∠DEF的平分線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖,已知平面與直線均垂直于所在平面,且,

(Ⅰ)求證:平面; 
(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)如圖,已知四棱錐底面為菱形,平面,,分別是、的中點(diǎn).
(1)證明:
(2)設(shè), 若為線段上的動(dòng)點(diǎn),與平面所成的最大角的正切值為
,求此時(shí)異面直線AE和CH所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案