【題目】將函數(shù)的圖象向左平移個(gè)單位,得函數(shù)的圖象(如圖) ,點(diǎn)分別是函數(shù)圖象上軸兩側(cè)相鄰的最高點(diǎn)和最低點(diǎn),設(shè),則的值為( )

A. B. C. D.

【答案】A

【解析】將函數(shù)的圖象向左平移個(gè)單位,得函,所以,由余弦定理可得, ,

,故選A.

【方法點(diǎn)晴】本題主要考查三角函數(shù)的圖象與性、余弦定理以及兩角差的正切公式,屬于難題.三角函數(shù)的圖象與性質(zhì)是高考考查的熱點(diǎn)之一,經(jīng)?疾槎x域、值域、周期性、對(duì)稱(chēng)性、奇偶性、單調(diào)性、最值等,其中公式運(yùn)用及其變形能力、運(yùn)算能力、方程思想等可以在這些問(wèn)題中進(jìn)行體現(xiàn),在復(fù)習(xí)時(shí)要注意基礎(chǔ)知識(shí)的理解與落實(shí).三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時(shí)要抓住函數(shù)解析式這個(gè)關(guān)鍵,在函數(shù)解析式較為復(fù)雜時(shí)要注意使用三角恒等變換公式把函數(shù)解析式化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補(bǔ)充的條件為(  )

  、佟     、

A. ①n3≥1 000?、趎3<1 000?

B. ①n3≤1 000? ②n3≥1 000?

C. ①n3<1 000?、趎3≥1 000?

D. ①n3<1 000?、趎3<1 000?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓是以的中點(diǎn)為圓心, 為半徑的圓.

(Ⅰ)若圓的切線在軸和軸上截距相等,求切線方程;

(Ⅱ)若是圓外一點(diǎn),從向圓引切線, 為切點(diǎn), 為坐標(biāo)原點(diǎn),且有,求使最小的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為, ,過(guò)點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年時(shí)紅軍長(zhǎng)征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長(zhǎng)征勝利80周年知識(shí)問(wèn)答,宣傳長(zhǎng)征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng),其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個(gè)紀(jì)念品,其數(shù)據(jù)表格如下:

公園

獲得簽名人數(shù)

45

60

30

15

(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺(tái)記者的采訪,求這兩人均來(lái)自乙公園的概率;

(Ⅲ)電視臺(tái)記者對(duì)乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長(zhǎng)征”歷史的問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):

有興趣

無(wú)興趣

合計(jì)

25

5

30

15

15

30

合計(jì)

40

20

60

據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為有興趣研究“紅軍長(zhǎng)征”歷史與性別有關(guān).

臨界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為推行“高效課堂”教學(xué)法,某數(shù)學(xué)老師分別用傳統(tǒng)教學(xué)和“高效課堂”兩種不同的教學(xué)方法,在同一年級(jí)的甲、乙兩個(gè)同層次的班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期末考試后, 分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖(記成績(jī)不低于70分者為“成績(jī)優(yōu)良”).

(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,數(shù)學(xué)成績(jī)前十名的平均分,并大致判斷那種教學(xué)方法的教學(xué)效果更佳;

(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方法有關(guān)”?

附:

獨(dú)立性檢驗(yàn)臨界表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,過(guò)分別作曲線的切線,且關(guān)于軸對(duì)稱(chēng),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市需對(duì)某環(huán)城快速車(chē)道進(jìn)行限速,為了調(diào)研該道路車(chē)速情況,于某個(gè)時(shí)段隨機(jī)對(duì)輛車(chē)的速度進(jìn)行取樣,測(cè)量的車(chē)速制成如下條形圖:

經(jīng)計(jì)算:樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.已知車(chē)速過(guò)慢與過(guò)快都被認(rèn)為是需矯正速度,現(xiàn)規(guī)定車(chē)速小于或車(chē)速大于是需矯正速度.

(1)從該快速車(chē)道上所有車(chē)輛中任取個(gè),求該車(chē)輛是需矯正速度的概率;

(2)從樣本中任取個(gè)車(chē)輛,求這個(gè)車(chē)輛均是需矯正速度的概率;

(3)從該快速車(chē)道上所有車(chē)輛中任取個(gè),記其中是需矯正速度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一張長(zhǎng)為,寬為)的長(zhǎng)方形鐵皮,準(zhǔn)備用它做成一個(gè)無(wú)蓋長(zhǎng)方體鐵皮容器,要求材料利用率為100%,不考慮焊接處損失.如圖,在長(zhǎng)方形的一個(gè)角上剪下一塊邊長(zhǎng)為的正方形鐵皮,作為鐵皮容器的底面,用余下材料剪拼后作為鐵皮容器的側(cè)面,設(shè)長(zhǎng)方體的高為,體積為.

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該鐵皮容器體積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案