點(diǎn)P、Q、R分別在三棱錐A-BCD的三條側(cè)棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y(jié).求證:X、Y、Z三點(diǎn)共線.

答案:
解析:

  證明:∵P、Q、R三點(diǎn)不共線,∴P、Q、R三點(diǎn)可以確定一個(gè)平面α.

  ∵X∈PQ,PQα,∴X∈α,又X∈BC,BC面BCD,∴X∈平面BCD.

  ∴點(diǎn)X是平面α和平面BCD的公共點(diǎn).同理可證,點(diǎn)Y、Z都是這兩個(gè)平面的公共點(diǎn),即點(diǎn)X、Y、Z都在平面α和平面BCD的交線上.

  解析:證明點(diǎn)共線的基本方法是利用公理2,證明這些點(diǎn)是兩個(gè)平面的公共點(diǎn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充三模)P點(diǎn)在橢圓
x2
4
+
y2
3
=1上運(yùn)動(dòng),Q,R分別在兩圓(x+1)2+y2=1和(x-1)2+y2=1上運(yùn)動(dòng),則|PQ|+|PR|的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC在平面α外,它的三邊所在直線分別交平面α于點(diǎn)P、Q、R,求證:P、Q、R三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知△ABC的三個(gè)頂點(diǎn)都不在平面α內(nèi),它的三邊AB、BC、AC延長(zhǎng)后分別交平面α于點(diǎn)P、Q、R.求證:點(diǎn)P、Q、R在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆內(nèi)蒙古呼倫貝爾市高二上學(xué)期第一次綜合考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分8分)如圖,已知△ABC在平面α外,它的三邊所在直線分別交平面α于點(diǎn)P、Q、R,求證:P、Q、R三點(diǎn)共線.

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案