8.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$且z=2x-y的最大值為a,則$\int_0^π{a{{cos}^2}}\frac{x}{2}dx$=3π.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用平移法進(jìn)行求解得a的值,結(jié)合函數(shù)的積分公式進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x-y得y=2x-z,
平移直線y=2x-z,
由圖象可知當(dāng)直線y=2x-z經(jīng)過點B時,直線y=2x-z的截距最小,
此時z最大.
由$\left\{\begin{array}{l}{y=2}\\{x-y-2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$,即B(4,2)
即a=zmax=2×4-2=6,
則$\int_0^π{a{{cos}^2}}\frac{x}{2}dx$=6∫${\;}_{0}^{π}$$\frac{1}{2}$(1+cosx)dx=3(x+sinx)|${\;}_{0}^{π}$=3π,
故答案為:3π.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想以及函數(shù)的積分公式是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D為A1B1的中點.
(Ⅰ)證明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,點A1在平面ABC的射影在AC上,且側(cè)面A1ABB1的面積為$2\sqrt{3}$,求三棱錐A1-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(x-$\sqrt{3}$)2017=a0x2017+a1x2016+a2x2015+…+a2016+a2017,則(a0+a2+…+a20162-(a1+a3+…+a20172的值為-22017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為( 。
A.3π+$\sqrt{3}$B.3π+$\sqrt{3}$+1C.5π+$\sqrt{3}$D.5π+$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線${C_1}:\frac{x^2}{2}-{y^2}=1$與雙曲線${C_2}:\frac{x^2}{2}-{y^2}=-1$,給出下列說法,其中錯誤的是( 。
A.它們的焦距相等B.它們的焦點在同一個圓上
C.它們的漸近線方程相同D.它們的離心率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2lnx-2mx+x2(m>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)m≥$\frac{{3\sqrt{2}}}{2}$時,若函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的圖象與x軸交于A,B兩點,其橫坐標(biāo)分別為x1,x2(x1<x2),線段AB的中點的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx-cx2-bx零的點,求證:(x1-x2)h'(x0)≥-$\frac{2}{3}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)g(x)=Acos(φx+ω)圖象的一個對稱中心可能為( 。
A.$(-\frac{5}{2},0)$B.$(\frac{1}{6},0)$C.$(-\frac{1}{2},0)$D.$(-\frac{11}{6},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=xln(ax+1)(a≠0).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若a>0且滿足:對?x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤ln3-ln2,試比較ea-1與${a^{1-\frac{1}{e}}}$的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三棱錐P-ABC中,PA、PB、PC互相垂直,PA=PB=1,M是線段BC上一動點,若直線AM與平面PBC所成角的正切的最大值是$\frac{\sqrt{6}}{2}$,則三棱錐P-ABC的外接球的表面積是( 。
A.B.C.D.16π

查看答案和解析>>

同步練習(xí)冊答案