19.已知(x-$\sqrt{3}$)2017=a0x2017+a1x2016+a2x2015+…+a2016+a2017,則(a0+a2+…+a20162-(a1+a3+…+a20172的值為-22017

分析 分別令x=1和-1,求得a1+a2+…+a2016+a2017和a0-a1+a2-…+a2016-a2017的值,
再計算(a0+a2+…+a20162-(a1+a3+…+a20172的值.

解答 解:(x-$\sqrt{3}$)2017=a0x2017+a1x2016+a2x2015+…+a2016x+a2017
令x=1,得(1-$\sqrt{3}$)2017=a0+a1+a2+…+a2016+a2017,
令x=-1,得(-1-$\sqrt{3}$)2017=-a0+a1-a2+…+-2016+a2017,
∴(1+$\sqrt{3}$)2017=a0-a1+a2-…+a2016-a2017
則(a0+a2+…+a20162-(a1+a3+…+a20172
=(a0+a1+…+a2017)(a0-a1+…-a2017
=(1-$\sqrt{3}$)2017•(1+$\sqrt{3}$)2017
=(1-3)2017
=-22017
故答案為:-22017

點評 本題考查了用特殊值計算二項式展開式系數(shù)的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=2$,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OP}=λ\overrightarrow{OA}+\frac{μ}{2}\overrightarrow{OB}$,且λ+μ=1,則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍是$(-\frac{{\sqrt{2}}}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在底面ABCD為平行四邊形的四棱柱ABCD-A1B1C1D1中,M是AC與BD的交點,若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,則下列向量中與$\overrightarrow{{B_1}M}$相等的向量是(  )
A.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+2x2-4x+5.求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.梯形ABCD中,AB∥CD,AB=4,AD=DC=1,若$\overrightarrow{AD}$⊥$\overrightarrow{DC}$,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a,b∈R,i是虛數(shù)單位,且b+(a-1)i=1+i,則a+b的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$的圖象向左平移$\frac{π}{4}$個單位,再向上平移2個單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A.$g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$B.$g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$C.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$D.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$且z=2x-y的最大值為a,則$\int_0^π{a{{cos}^2}}\frac{x}{2}dx$=3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點M的極坐標(biāo)為$(3\sqrt{2},\frac{π}{4})$,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}}\right.$(α為參數(shù)).
(1)直線l過M且與圓C相切,求直線l的極坐標(biāo)方程;
(2)過點P(0,m)且斜率為$\sqrt{3}$的直線l'與圓C交于A,B兩點,若|PA|•|PB|=6,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案