下列空間幾何體能較合適作為平面等邊三角形的類比對象的是(  )
A、正四棱錐B、正方體
C、正四面體D、球
考點:類比推理
專題:探究型,推理和證明
分析:根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由平面圖形類比平面圖形或立體圖形.結(jié)合四面體的四個面彼此相連類比邊首尾相連的平面圖形即可.
解答: 解:因為正四面體的四個面彼此相連,
類比平面圖形,
則邊首尾相連最簡單的等邊三角形,
得:可作為四面體的類比對象的是等邊三角形.
故選C.
點評:本題主要考查了類比推理.類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義運算
.
ab
cd
.
=ad-bc,若
.
3
cosα
1sinα
.
=
6
5
,α∈(0,
π
2
),則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過圓x2+y2=r2上一點M(x0,y0)的切線方程為x0x+y0y=r2.類比上述性質(zhì),可以得到橢圓
x2
a2
+
y2
b2
=1類似的性質(zhì)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x≥0
y≥0
y+x≤4
,P為上述不等式組表示的平面區(qū)域,則
(1)目標(biāo)函數(shù)z=y-x的最小值為
 

(2)當(dāng)b從-4連續(xù)變化到
 
時,動直線y-x=b掃過P中的那部分區(qū)域的面積為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓
x2
8
+
y2
5
=1的焦點為頂點,以橢圓的頂點為焦點的雙曲線的離心率為( 。
A、
2
26
13
B、
2
6
3
C、
8
3
D、
13
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
,
b
滿足|
b
|=1,且
b
b
-
a
的夾角為30°,則|
a
|的取值范圍是( 。
A、(0,
1
2
B、[
1
2
,1)
C、[1,+∞)
D、[
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(5,3)和圓C:(x-1)2+y2=9,點A為直線PC與圓的一個交點(點A、P在圓心C的兩側(cè)),PB為圓的一條切線,切點為B,則
PA
PB
=(  )
A、
8
5
B、
32
5
C、
64
5
D、
128
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于向量的等式中,正確的是( 。
A、
AB
+
BC
+
CA
=
0
B、
AB
=
BC
-
AC
C、
AB
=
CA
-
BC
D、
AB
=
BC
+
CA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
與向量
b
的夾角為60°,且|
a
|=1,|
b
|=2,若
c
=
a
b
c
⊥(2
a
-
b
),則實數(shù)λ的值為( 。
A、λ=
1
4
B、λ=
1
3
C、λ=
1
2
D、λ=1

查看答案和解析>>

同步練習(xí)冊答案