【題目】如圖,在三棱柱中,,E,F分別為線段 的中點(diǎn).
(1)求證:面;
(2)求證:面;
(3)在線段上是否存在一點(diǎn)G,使平面平面,證明你的結(jié)論.
【答案】(1)見解析; (2)見解析; (3)見解析.
【解析】
(1)利用三角形中位線證得,由此證得,從而證得平面.
(2)首先通過證明平面,證得,由此證得,根據(jù)等腰三角形的性質(zhì)證得,由此證得平面.
(3)取的中點(diǎn),連接,通過證明平面,和平面,證得平面平面,由此證得點(diǎn)存在,且是的中點(diǎn).
(1)因?yàn)?/span>E,F分別為線段的中點(diǎn),
所以,因?yàn)?/span>,所以.
又因?yàn)?/span>平面,,
所以面.
(2)因?yàn)?/span>,
所以平面.因?yàn)?/span>平面,所以.
又因?yàn)?/span>,所以.
因?yàn)?/span>,E為的中點(diǎn),所以,
因?yàn)?/span>,所以面.
(3)取中點(diǎn)為G,連接GE、GF,
又因?yàn)?/span>E為的中點(diǎn),所以.
因?yàn)?/span>平面,平面,
所以平面.同理可證:平面.
又因?yàn)?/span>,所以平面平面.
所以在線段上是存在一點(diǎn)G,使平面平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①“且為真”是“或為真”的充分不必要條件:②“且為假”是“或為真”的充分不必要條件;③“或為真”是“非為假”的必要不充分條件;④“非為真”是“且為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,若此橢圓上存在不同的兩點(diǎn)A,B關(guān)于直線y=4x+m對稱,則實(shí)數(shù)m的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流”大學(xué)專業(yè)獎學(xué)金是以所學(xué)專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學(xué)金、專業(yè)二等獎學(xué)金及專業(yè)三等獎學(xué)金,且專業(yè)獎學(xué)金每個學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校年名學(xué)生周課外平均學(xué)習(xí)時間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時間段獲得專業(yè)獎學(xué)金的頻率柱狀圖.
(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎學(xué)金的人數(shù);
(Ⅱ)若周課外平均學(xué)習(xí)時間超過小時稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎學(xué)金與是否是“努力型”學(xué)生有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為,焦距為2,拋物線的準(zhǔn)線經(jīng)過的左焦點(diǎn).
(1)求與的方程;
(2)直線經(jīng)過的上頂點(diǎn)且與交于,兩點(diǎn),直線,與分別交于點(diǎn)(異于點(diǎn)),(異于點(diǎn)),證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次跳繩活動中,某學(xué)校從高二年級抽取了100位同學(xué)一分鐘內(nèi)跳繩,由測量結(jié)果得到如圖所示的頻率分布直方圖,落在區(qū)間[140,150),[150,160),[160,170]內(nèi)的頻率之比為4:2:1.
(1)求跳繩次數(shù)落在區(qū)間[150,160)內(nèi)的頻率;
(2)用分層抽樣的方法在區(qū)間[130,160)內(nèi)抽取6位同學(xué),將該樣本看成一個總體,從中任意抽取2位同學(xué),求這2位同學(xué)跳繩次數(shù)都在區(qū)間[130,150)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)P到兩定點(diǎn)M(﹣3,0),N(3,0)的距離滿足|PM|=2|PN|.
(1)求證:點(diǎn)P的軌跡為圓;
(2)記(1)中軌跡為⊙C,過定點(diǎn)(0,1)的直線l與⊙C交于A,B兩點(diǎn),求△ABC面積的最大值,并求此時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com