已知數(shù)列{an}中,a1=56,an+1=an-12(n∈N*).則a6=
 
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:易判數(shù)列{an}為首項(xiàng)為56公差為-12的等差數(shù)列,由通項(xiàng)公式可得.
解答: 解:由題意可得an+1-an=-12,
∴數(shù)列{an}為首項(xiàng)為56公差為-12的等差數(shù)列,
∴a6=56+5(-12)=-4
故答案為:-4
點(diǎn)評:本題考查等差數(shù)列的通項(xiàng)公式和判定,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖在棱長均為2的正四棱錐P-ABCD中,點(diǎn)E為PC中點(diǎn),則下列命題正確的是( 。
A、BE平行面PAD,且直線BE到面PAD距離為
3
B、BE平行面PAD,且直線BE到面PAD距離為
2
6
3
C、BE不平行面PAD,且BE與平面PAD所成角大于
π
6
D、BE不平行面PAD,且BE與面PAD所成角小于
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線方程為4x+3y=0,則該雙曲線的離心率為( 。
A、
1
4
B、
4
3
C、
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集,f(2-x)=f(x),當(dāng)x≥1時,f(x)=e-x-1(e為自然對數(shù)的底),則必有(  )
A、f(
1
3
)
>f(2)>f(
1
2
)
B、f(
1
2
)
>f(2)>f(
1
3
)
C、f(
1
2
)
f(
1
3
)
>f(2)
D、f(2)>f(
1
2
)
f(
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,-
3
2
,
5
2
),
b
=(-3,λ,-
15
2
)滿足
a
b
,則λ等于( 。
A、
2
3
B、
9
2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,{bn}為等比數(shù)列,且滿足:a1003+a1013=π,b6•b9=2,則tan
a1+a2015
1+b7b8
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax,求:
(1)當(dāng)a=1時,在區(qū)間[0,3]上的最小值;
(2)在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
3
 -(x-m)2+1的單調(diào)增區(qū)間與值域相同,則實(shí)數(shù)m的取值為( 。
A、
1
3
B、3
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐V-ABCD的側(cè)棱長與底面邊長都相等,E是VA的中點(diǎn),O為底面中心,則異面直線EO、BC所成的角是
 

查看答案和解析>>

同步練習(xí)冊答案