(本小題滿分13分)已知.
(1)求函數(shù)的單調區(qū)間;
(2)若對任意恒成立,求實數(shù)a的取值范圍.

解:(1)   
   ∴
由于的定義域為,
單調遞減,在單調遞增··············································· 6分
(2) ,由于
當x = 1時,
·························································································· 13分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) (1)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍; (2)若的極值點,求上的最大值;(3)在(2)的條件下,是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖象恰有3個交點?若存在,請求出實數(shù)的取值范圍;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知是定義在上的奇函數(shù),當時,,其中是自然對數(shù)的底數(shù).
(1)求的解析式;
(2)求的圖象在點處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線1、2與函數(shù)的圖象以及軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求、的值;
(Ⅱ)求陰影面積關于的函數(shù)的解析式;
(Ⅲ)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)設函數(shù).          
(1)對于任意實數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個實根,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(I)求的單調區(qū)間;
(II)若對于任意的,都有求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當時,求曲線在點處的切線方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點的個數(shù)(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設函數(shù)為R上的連續(xù)函數(shù),則(   )

A. B. C. D.

查看答案和解析>>

同步練習冊答案