【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每個人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問最小一份為(
A.
B.
C.
D.

【答案】A
【解析】解:設(shè)五個人所分得的面包為a﹣2d,a﹣d,a,a+d,a+2d,(其中d>0); ∵把100個面包分給5個人,
∴(a﹣2d)+(a﹣d)+a+(a+d)+(a+2d)=5a=100,得a=20,
∵使較大的三份之和的 是較小的兩份之和,
(a+a+d+a+2d)=a﹣2d+a﹣d,得3a+3d=7(2a﹣3d),
化簡得24d=11a,∴d= = ,
所以最小的1分為a﹣2d=20﹣2× =
故選:A.
設(shè)五個人所分得的面包為a﹣2d,a﹣d,a,a+d,a+2d(d>0),根據(jù)條件列出方程求出a和d的值,從而得最小一份的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的物理知識競賽中,將三個年級參賽學(xué)生的成績在進(jìn)行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績在50~70分的頻率是多少;
(2)求這三個年級參賽學(xué)生的總?cè)藬?shù)是多少;
(3)求成績在80~100分的學(xué)生人數(shù)是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上點(diǎn)M(x,y)與兩個定點(diǎn)M1(26,1),M2(2,1)的距離之比等于5.
(1)求點(diǎn)M的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為C,過點(diǎn)A(﹣2,3)的直線l被C所截得的線段的長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長到原來的2倍,再將整個圖象沿x軸向右平移 個單位,沿y軸向下平移1個單位,得到函數(shù)y= sinx的圖象,則y=f(x)的解析式為(
A.y= sin(2x+ )+1
B.y= sin(2x﹣ )+1
C.y= sin( x+ )+1
D.y= sin( x﹣ )+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“神州”號飛船返回艙順利到達(dá)地球后,為了及時將航天員救出,地面指揮中心在返回艙預(yù)計(jì)到達(dá)的區(qū)域安排了同一條直線上的三個救援中心(記為B,C,D).當(dāng)返回艙距地面1萬米的P點(diǎn)時(假定以后垂直下落,并在A點(diǎn)著陸),C救援中心測得飛船位于其南偏東60°方向,仰角為60°,B救援中心測得飛船位于其南偏西30°方向,仰角為30°.D救援中心測得著陸點(diǎn)A位于其正東方向.
(1)求B,C兩救援中心間的距離;
(2)D救援中心與著陸點(diǎn)A間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1. (Ⅰ)求b1 , b11 , b101;
(Ⅱ)求數(shù)列{bn}的前1000項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象向右平移個單位,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的解析式,并寫出它的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200米,圓心角為120°的扇形廣場內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點(diǎn)間距離為定長 米.

(1)當(dāng)∠BAC=45°時,求觀光道BC段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中A、B兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案