【題目】“神州”號(hào)飛船返回艙順利到達(dá)地球后,為了及時(shí)將航天員救出,地面指揮中心在返回艙預(yù)計(jì)到達(dá)的區(qū)域安排了同一條直線上的三個(gè)救援中心(記為B,C,D).當(dāng)返回艙距地面1萬(wàn)米的P點(diǎn)時(shí)(假定以后垂直下落,并在A點(diǎn)著陸),C救援中心測(cè)得飛船位于其南偏東60°方向,仰角為60°,B救援中心測(cè)得飛船位于其南偏西30°方向,仰角為30°.D救援中心測(cè)得著陸點(diǎn)A位于其正東方向.
(1)求B,C兩救援中心間的距離;
(2)D救援中心與著陸點(diǎn)A間的距離.

【答案】解:(1)由題意知PA⊥AC,PA⊥AB,則△PAC,△PAB均為直角三角形
在Rt△PAC中,PA=1,∠PCA=60°,解得AC=
在Rt△PAB中,PA=1,∠PBA=30°,解得AB=
又∠CAB=90°,BC=萬(wàn)米
(2)
又∠CAD=30°,所以
在△ADC中,由正弦定理,
AD=萬(wàn)米
【解析】(1)根據(jù)題意可知△PAC,△PAB均為直角三角形,進(jìn)而分別在兩個(gè)三角形中利用其中的一角和一邊求得AC和AB,最后利用勾股定理求得BC.
(2)先利用同角三角函數(shù)的基本關(guān)系求得cos∠ACD,進(jìn)而利用sin∠ADC=sin(30°+∠ACD)借助兩角和公式求得sin∠ADC,最后利用正弦定理求得AD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校學(xué)生總數(shù)為8000人,其中一年級(jí)1600人,二年級(jí)3200人,三年級(jí)2000人,四年級(jí)1200人.為了完成一項(xiàng)調(diào)查,決定采用分層抽樣的方法,從中抽取容量為400的樣本.
(1)各個(gè)年級(jí)分別抽取了多少人?
(2)若高校教職工有505人,需要抽取50個(gè)樣本,你會(huì)采用哪種抽樣方法,請(qǐng)寫出具體抽樣過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的離心率為 ,過(guò)左焦點(diǎn)F1(﹣c,0)作圓x2+y2=a2的切線,切點(diǎn)為E,延長(zhǎng)F1E交拋物線y2=4cx于P,Q兩點(diǎn),則|PE|+|QE|的值為(
A.
B.10a
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點(diǎn)距地面2米,最高點(diǎn)距地面18米,P是摩天輪輪周上一定點(diǎn),從P在最低點(diǎn)時(shí)開(kāi)始計(jì)時(shí),則16分鐘后P點(diǎn)距地面的高度是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b.
(1)求這一天的最大溫差;
(2)寫出這段曲線的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個(gè)面包分給5個(gè)人,使每個(gè)人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問(wèn)最小一份為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移個(gè)單位,向上平移1個(gè)單位,得到的函數(shù)解析式為( 。
A.y=sin(2x+)+1
B.y=sin(2x﹣)+1
C.y=sin(2x+)+1
D.y=sin(2x﹣)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(理)如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn).設(shè)點(diǎn)P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是(

A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]為奇函數(shù),且|logaφ|<1}的子集個(gè)數(shù)為4,則a的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案