【題目】已知是橢圓
的右焦點(diǎn),過原點(diǎn)的直線
與
交于
,
兩點(diǎn),則
的取值范圍是______.
【答案】
【解析】
求得橢圓的a,b,c,取左焦點(diǎn)F',可得四邊形MFNF'為平行四邊形,由橢圓定義可得|MF|+|NF|=4,設(shè)|MF|=x,x∈[1,3],則|NF|=4-x,則=
,運(yùn)用導(dǎo)數(shù)求得單調(diào)性,可得最值,即可得到所求范圍.
橢圓C:的a=2,b=
,c=1,可取左焦點(diǎn)為F',連接MF',NF',
可得四邊形MFNF'為平行四邊形,即有|MF|+|NF|=|MF|+|MF'|=2a=4,設(shè)|MF|=x,x∈[1,3],則|NF|=4-x,則=
可令f(x)=
,
可得f(x)在[1,
]遞減,(
,3]遞增,
可得f(x)的最小值為f()=
,f(1)=
,f(3)=
即f(x)的最大值為
,則
的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點(diǎn)
在橢圓
上,橢圓
的離心率是
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn),
為橢圓上異于橢圓
長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線
斜率分別為
,若
,請(qǐng)判斷直線
是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由正整數(shù)組成的無窮數(shù)列,對(duì)任意
,
滿足如下兩個(gè)條件:①
是
的倍數(shù);②
.
(1)若,
,寫出滿足條件的所有
的值;
(2)求證:當(dāng)時(shí),
;
(3)求所有可能取值中的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)
滿足
,且當(dāng)
時(shí),
,則下列結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)
是
軸與圓
的一個(gè)公共點(diǎn)(異于原點(diǎn)),拋物線
的準(zhǔn)線為
,
上橫坐標(biāo)為
的點(diǎn)
到
的距離等于
.
(1)求的方程;
(2)直線與圓
相切且與
相交于
,
兩點(diǎn),若
的面積為4,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在中,
,
,
,
為
的平分線,點(diǎn)
在線段
上,
.如圖2所示,將
沿
折起,使得平面
平面
,連結(jié)
,設(shè)點(diǎn)
是
的中點(diǎn).
圖1 圖2
(1)求證: 平面
;
(2)在圖2中,若平面
,其中
為直線
與平面
的交點(diǎn),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是R上的奇函數(shù),m、n是常數(shù).
(1)求m,n的值;
(2)判斷的單調(diào)性并證明;
(3)不等式對(duì)任意
恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com