【題目】設函數(shù).
(1)若函數(shù)是R上的單調函數(shù),求實數(shù)a的取值范圍;
(2)設a=, (, ), 是的導函數(shù).①若對任意的x>0, >0,求證:存在,使<0;②若,求證: <.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列和滿足,,,.
(1)證明:是等比數(shù)列,是等差數(shù)列;
(2)求和的通項公式;
(3)令,求數(shù)列的前項和的通項公式,并求數(shù)列的最大值、最小值,并指出分別是第幾項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年冬季青奧會即將在瑞士盛大開幕,為了在射擊比賽中取得優(yōu)異成績,某國擬從甲、乙兩位選手中派出一位隨代表團參賽,現(xiàn)兩人進行了5次射擊,射擊成績如下表(單位:分),則應派出選手及其標準差為( )
選手 次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 7.4 | 8.1 | 8.6 | 8.0 | 7.9 |
乙 | 7.8 | 8.4 | 7.6 | 8.1 | 8.1 |
A.甲,0.148B.乙,0.076C.甲,D.乙,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系中,橢圓的左、右焦點分別為, ,已知點和都在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)設, 是橢圓上位于軸上方的兩點,且直線與直線平行, 與交于點,
(i)若,求直線的斜率;
(ii)求證: 是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了解高一學生的視力健康狀況,在高一年級體檢活動中采用統(tǒng)一的標準對數(shù)視力表,按照《中國學生體質健康監(jiān)測工作手冊》的方法對1039名學生進行了視力檢測,判斷標準為:雙眼裸眼視力為視力正常, 為視力低下,其中為輕度, 為中度, 為重度.統(tǒng)計檢測結果后得到如圖所示的柱狀圖.
(1)求該校高一年級輕度近視患病率;
(2)根據保護視力的需要,需通知檢查結果為“重度近視”學生的家長帶孩子去醫(yī)院眼科進一步檢查和確診,并開展相應的矯治,則該校高一年級需通知的家長人數(shù)約為多少人?
(3)若某班級6名學生中有2人為視力正常,則從這6名學生中任選2人,恰有1人視力正常的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處與直線相切,求的值;
(2)在(1)的條件下,求在上的最大值;
(3)若不等式對所有的都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分別為CD、PB的中點.
(1)求證:EF⊥平面PAB;
(2)設,求直線AC與平面AEF所成角θ的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com