(20)

如圖,已知長方體直線與平面

所成的角為,垂直,的中點.

(I)求異面直線所成的角;

(II)求平面與平面所成的二面角(銳角)的大。

(III)求點到平面的距離.

20、

解法一:在長方體中,以所在的直線為軸,以所在的直線為軸,所在的直線為軸建立空間直角坐標系如圖。

由已知可得

平面,從而與平面所成的角為,

,,

從而易得   …………

=。

即異面直線所成的角為

(II)易知平面的一個法向量m=(0,1,0).

n=(x,y,z)是平面的一個法向量,

n=(1,,1),…………………………

即平面與平面所成的二面角的大。ㄤJ角)為

(III)點到平面的距離,即在平面的法向量n上的投影的絕對值,

所以距離

所以點到平面的距離為

解法二:(I)連結(jié),過的垂線,垂足為。

與兩底面都垂直,

平面

因此。

為異面直線所成的角!

連結(jié),由FK⊥BDD1B1

從而為Rt△。

中,

,

,

∴異面直線所成的角為!

(II)由于,由的垂線,垂足為,連結(jié),由三垂線定理知

即為平面與平面所成二面角,且,在平面中,延長交于點。

的中點,,

分別為的中點,

,

為等腰直角三角形,垂足點實為斜邊的中點,即重合。

易得。在中,,

即平面與平面所成的二面角的大。ㄤJ角)為。

(III)由(II)知平面是平面與平面所成二面角的平面角所在的平面,

∴面。

中,由,則即為點到平面的距離。

,得

。

所以點到平面的距離為。


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省姜堰市二中學高三學情調(diào)查數(shù)學試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點在矩陣A的變換下得到

   (1)求實數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的極坐標方程為,

(1)過極點的一條直線與圓相交于,A兩點,且∠,求的長.

(2)求過圓上一點,且與圓相切的直線的極坐標方程;

 

D.選修4-5:不等式選講

已知實數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省姜堰市高三學情調(diào)查數(shù)學試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點在矩陣A的變換下得到

   (1)求實數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的極坐標方程為,

(1)過極點的一條直線與圓相交于,A兩點,且∠,求的長.

(2)求過圓上一點,且與圓相切的直線的極坐標方程;

 

D.選修4-5:不等式選講

已知實數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓數(shù)學公式(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為數(shù)學公式|OF1|.
(1)求a,b滿足的關系式;
(2)過F2作與直線AB垂直的直線,交橢圓于P、Q兩點,當三角形PQF1面積為20數(shù)學公式時,求此時橢圓的方程;
(3)當點M在橢圓上變化時,求證:∠F1MF2的最大值為數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市崇明縣高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

如圖,已知橢圓(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為|OF1|.
(1)求a,b滿足的關系式;
(2)過F2作與直線AB垂直的直線,交橢圓于P、Q兩點,當三角形PQF1面積為20時,求此時橢圓的方程;
(3)當點M在橢圓上變化時,求證:∠F1MF2的最大值為

查看答案和解析>>

同步練習冊答案